navX2-M X P Robotics Navigation Sensor User Guide

Kauai Labs
Creative Commons - BY — 2020

Overview

navX2-MXP

Features

Technical Specifications
"Behind the Design"
Frequently-asked Questions

Installation

Installation

RoboRIO |nstallation

FTC Installation

Orientation

OmniMount

I/O Expansion

Alternative Installation Options
Creating an Enclosure

Softwar e

Software

RoboRIO Libraries
Android Library (FTC)
Linux Library

Arduino Library

navXUl

Tools

Examples

Examples

Field-Oriented Drive (FRC)
Rotate to Angle (FRC)
Automatic Balancing (FRC)
Collision Detection (FRC)
Motion Detection (FRC)
Data Monitor (FRC)

MXP I/O Expansion (FRC)

Guidance

Best Practices
Terminology

Selecting an Interface
Gyro/Accelerometer Calibration
Magnetometer Calibration
Y aw Drift

Support

Support

Firmware Archive
Factory Test Procedure
Software Archive

Advanced

Table of Contents

Serial Protocol

Register Protocol

Open-source Hardware/Software

"Classic" navX-MXP Firmware Customization
navXUIl Customization

Technical References

81
86
90
90
95
96

Overview
navxX2-MXP

Overview
navxX2-M XP

navX2

navX2-MXP is a second-generation 9-axis inertial/magnetic sensor and motion processor. Designed
for plug-n-play installation onto a National Instruments RoboRIO™, navX2-MXP aso
provides RoboRIO |/O Expansion.

“Generation 2" navX2-MXP isadrop-in replacement for “Classic” navX2-MXP. See the Freguently
Asked Questions (FAQ) for more information about navX2-MXP improvements.

navX2-MXP is a must-have add on to any RoboRIO-based control system, and includes free software
libraries, example code and many more features.

Super-charge your robot:

."_n |:| gul-u

rn:x:p

» ()pavX?2

¢ Field-Oriented Drive
e Auto-balance
Auto-rotate to angle
Motion Detection
Collision Detection
e and more...

https://i1.wp.com/pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2020/09/Logo_navX2-MXP_2020.png?ssl=1
https://pdocs.kauailabs.com/navx-mxp/intro/frequently-asked-questions/
https://pdocs.kauailabs.com/navx-mxp/intro/frequently-asked-questions/
https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/
https://pdocs.kauailabs.com/navx-mxp/examples/
https://pdocs.kauailabs.com/navx-mxp/intro/features/
https://pdocs.kauailabs.com/navx-mxp/examples/field-oriented-drive/
https://pdocs.kauailabs.com/navx-mxp/examples/automatic-balancing/
https://pdocs.kauailabs.com/navx-mxp/examples/rotate-to-angle-2/
https://pdocs.kauailabs.com/navx-mxp/examples/rotate-to-angle/
https://pdocs.kauailabs.com/navx-mxp/examples/collision-detection/

Overview
navxX2-MXP

Expand your RoboRIO™:

10 Digital 1/0s

4 Analog Inputs

2 Analog Outputs

12C, SPI & UART Interfaces
Selectable Output Voltage

Features

Sophisticated Motion Processing

e Low-latency Yaw, Pitch and Roll Angles, w/low yaw drift

Supports high rotation rates (4000 degrees/second), High acceleration rates (16G) ensuring
accuracy even during extreme circumstances

Gravity-corrected Linear Velocity Vectors and Linear Displacement Estimates

Automatic Accelerometer/Gyroscope Calibration

High-sensitivity Motion Detection

Tilt-compensated Compass Heading

9-Axis absolute heading w/Magnetic disturbance detection

Configurable Update Rate from 4 to 200Hz

Easy to Use
e Plug-n-Play Installation via RoboRIO MXP Interface
e USB, TTL UART, 12C and SPI communication interfaces

e RoboRIO libraries and sample code
e Toolsfor Magnetometer Calibration

Protective Enclosure
e A custom navX2-MXP enclosure can be created with a 3D printer using provided Enclosure
design files

e Alternatively, the navX2-MXP enclosure can be purchased online.

e Firmware updates can be easily downloaded to the navX2-MXP circuit board via the USB port.

Technical Specifications

The navX2-MXP circuit board and official firmware provide inertial and magnetic measurements, with a
range, accuracy and update rate as described on this page.

https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/
https://www.shapeways.com/shops/kauailabs

Overview
Technical Specifications

Note that certain performance specifications are only valid after Startup Gyroscope/A ccelerometer
Calibration period, during which time the navX2-MXP circuit board must be held still.

Additional details can be found in the navX2-M X P datashest.
Product Performance Specifications:

Electrical Specifications

Voltage: 5v DC

Current Consumption: 60 millamps

Communications Interfaces: USB, TTL UART, SPI, I12C

Power Connector: USB and/or 5VDC/GND Pins on MXP Connector

Power Source Fail-over: Automatic switch between USB/MXP Power within
100us

USB Connector: USB Mini-B

" Behind the Design”

The“Classic” navX-MXP is mentioned several times (pages 214-217, 227 and 231) within “FIRST Robots— Behind the
Design — 30 Profiles of Design, Manufacturing and Control” (2015, USFIRST). Please keep in mind that “ Generation 2"
navX2-MXPis adrop-in replacement for the “Classic” navX-MXP.

Team 624’ s 2015 Robot

@ A combinalion of sensors and mechanisms
macke § possibile o pick up foles in any
onentation

D The nawk MXP Robotics Nevigation Sensor
provided' a method fo increase the numiber
af SENSOrs used o i robol, This bosd
saamiessly integrated with the M roboRi0
robot confroder

214 | ARST Robets: Bahind the Design | Vince Wilczynski and Stephanie Sleryck

https://pdocs.kauailabs.com/navx-mxp/guidance/gyroaccelcalibration/
https://pdocs.kauailabs.com/navx-mxp/guidance/gyroaccelcalibration/
https://pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2020/09/navX2_MXP_Datasheet.pdf
https://pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/01/FIRST-2015-Book-Overview.pdf
https://pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/01/FIRST-2015-Book-Overview.pdf
https://i0.wp.com/pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/01/BehindTheDesign2015_Team624.jpg?ssl=1

Overview
"Behind the Design"

navX-MXP on Team 624’ s 2015 Robot

Team 2062’ s 2015 Robot

@ Rotary encoders reliably measuned the rodahion
of sach drve wheel. These were exsaniial
maasuramants neaded fo control the meacanum
e Sysianm,

@ The navX MXP Robotics Neigation
Sansor provided three-aos scomanomsiar
measuremants and Was 8 conad for other @ Sensors, elecincal panels, and contnod systen components wene included in the CAD drawings. This level
Sansor dala af dafal ensuned al the electnica and confrd systems were ndeosaied inlo e desion orooess.

navX-MXP on Team 2062’ s 2015 Robot

About the “Behind the Design” Book

“Behind the Design — 30 Profiles of Design, Manufacturing and Control” has six chapters that focus on CAD modeling,
traditional machining, CNC mills and lathes, CNC cutting, 3D printing, and sensors/control. Each chapter profiles five FRC
teamsto illustrate how these technol ogies apply to robot design, manufacturing, and control. The book also includes vignettes
between the chapters that illustrate the purpose of FIRST and its impact.

Frequently-asked Questions

https://i0.wp.com/pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/01/BehindTheDesign2015_Team2062.jpg?ssl=1
https://pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/01/FIRST-2015-Book-Overview.pdf

Overview
Frequently-asked Questions

How does navX2-M XP improve upon the* Classic” navX-MXP sensor?

* Improved Sensors: navX2-MXP replaces the older MPU-9250 9-axis IMU with the
newer 6-axis ISM330DHCX IMU and LIS2ZMDL Magnetometer from ST
Microel ectronics; these modern sensors feature significantly lower noise, greater stability,
higher accuracy and improved shock resistance than the now-obsolete Invensense
MPU-9250 found in the “Classic” navX-MXP sensor. Notably,
navX2-MXP s ISM330DHCX IMU is an industrial-class sensor which is extremely stable,
has far lower sensor noise characteristics, and handles higher rotation speeds (4000
degrees/second).

* Improved Processing Power and Sensor Fusion: navX2-MXP features an upgraded
180Mhz onboard 32-bit floating-point microcontroller which doubles the computation
power found on the “Classic” navX-MXP. Thisadditional computation power enables
navX2-MXP to introduce a new Kaman Filter-based algorithm with improved accuracy,
running at a blazing fast 416Hz update rate and processing +/- 4000 degree/second
gyroscope and +/-16G accel erometer data.

e Asaresult of these enhancements:

o Startup timeisreduced to only 5 seconds

o Pitch/Roll accuracy isincreased to 0.5 degrees

o Errorsdueto Extremeinertial eventsare minimized: The combination of
increased 4000 degree/second gyroscope range, 16G accelerometer range and high-
speed Kalman Filter based on this data greatly minimizes Y aw angle errors due to
vibration and high-speed impacts

o Velocity Measurement accuracy isimproved: Lower accelerometer noise levels
and stability enable very accurate Linear Velocity Vectors.

o Displacement Estimate accuracy isimproved: Lower accelerometer noise levels,
improved “zero-velocity update” processing, and higher-speed Kalman Filter
updates increase the accuracy of displacement estimates, although error levels are
still high enough that they are referred to as * estimates’ rather than
“measurements”.

» For more details, please review the navX2-MXP Technical Specifications.

If I currently usethe” Classic” navX-MXP, how easy isit to upgrade to the new navxX2-MXP?

Simply swap out the existing navX-MXP, replacing it with the new “ Generation 2" navX2-MXP.
navX2-MXP isidentical to navX-MXP from both a hardware and software interface perspective; it'sa
“drop-in replacement” with enhanced performance.

https://www.st.com/en/mems-and-sensors/ism330dhcx.html
https://www.st.com/en/mems-and-sensors/lis2mdl.html
https://www.st.com/en/mems-and-sensors/ism330dhcx.html
https://pdocs.kauailabs.com/navx-mxp/intro/technical-specifications/

Overview
Frequently-asked Questions

Why is a 4000 degree/second gyroscope like that present on navX2-MXP useful on a FRC robot?
Simply put, this minimizes yaw errors during high-inertia (e.g., impact) events.

Current consumer-class IMUs typically found on FRC robots (e.g., the “classic” navX-MXP) are limited
to measuring rotation at 2000 degrees/second. At first glance, this seems sufficient, since FRC robots
don’'t typically rotate 6 times per second. However 2000 degrees translates to 2 degreesin asingle
millisecond, and to 20 degrees per 10 millisecond period. If a FRC robot is contacted by a second robot
weighing 120 pounds and moving at 12 feet/second, this can cause the first robot to rotate sufficiently to
cause a 2000 degrees/second gyroscope to saturate — which in turn causes errors in the accumulated yaw
angle.

Will navX2-MXP work with the National | nstruments RoboRIO™7?
Yes, the navX2-MXP —like it’ s predecessor the “ Classic” navX-MXP —is designed specifically

to work with the RoboRIO. Please see the instructions for installing navX2-MXP onto a FIRST
FRC robot for more details, as there are several installation options.

Will navX2-MXP work with the Android-based FTC Control System?

Y es, navX2-MXP can be used with the Android-based FTC Control System, viaits |2C interface.
For more information, please see the FTC Robot Installation instructions and the description of
the Android Libraries.

What interface/installation options are available for the navX2-MXP?

e Plug-n-play install to the RoboRIO MXP port

e Connection to the RoboRIO MXP port via a male-to-femal e floppy-disk-style ribbon cable

¢ Connection to one of the RoboRIO USB Connectorsviaa USB Cable

e Connection of power (+5VDC)/ground to the navX2-MXP s MXP Connector, and direct
connection to the TTL UART, 12C or SPI pins.

Aren’t the magnetometer (compass heading) readings unreliable when the navX2-MXP isused on a
Robot with powerful motors?

Yes, thisis correct. If navX2-MXP is mounted nearby any energized motors, the magnetometer’s
ability to measure the (weak) earth’s magnetic field is severely diminished.

For this reason, using the magnetometer during a FIRST FRC match is an advanced feature.

https://pdocs.kauailabs.com/navx-mxp/installation/roborio-installation/
https://pdocs.kauailabs.com/navx-mxp/installation/roborio-installation/
https://pdocs.kauailabs.com/navx-mxp/software/android-library-ftc/
https://pdocs.kauailabs.com/navx-mxp/installation/roborio-installation/
https://pdocs.kauailabs.com/navx-mxp/installation/orientation#One-wire_Connect_via_"Floppy-disk"_extension_cable
https://pdocs.kauailabs.com/navx-mxp/installation/orientation#One-wire_Connect_via_USB_cable
https://pdocs.kauailabs.com/navx-mxp/installation/orientation#Low-level_Connect_via_Power_and_Signal_pins_on_MXP_Connector
https://pdocs.kauailabs.com/navx-mxp/installation/orientation#Low-level_Connect_via_Power_and_Signal_pins_on_MXP_Connector

Overview
Frequently-asked Questions

However, at the beginning of each FIRST FRC match, the robot is turned on for about a minute
before the match begins. During this time period, the motors are not energized and thus do not add
magnetic interference that would disturb the magnetometer readings. Once the magnetometer is
calibrated, navX2-MXP will return either an accurate magnetometer reading, or an indication that
its measurement of the earth’s magnetic field has been disturbed.

Magnetometer readings taken at the beginning of a match, when combined with the navX2-MXP
yaw measurements, enable a robot’ s pose and absol ute heading to be maintained throughout the
match. Thisfeature of the navX2-MXP isreferred to asa“9-axis’ heading.

Why do the Yaw angles provided by the navX2-MXP drift over time?

The short answer isthat the yaw angle is calculated by integrating reading from a gyroscope
which measures changes in rotation, rather than absolute angles. Over time, small errorsin the
rotation measurements build up over time. The navX2-MXP features sophisticated digital motion
processing and calibration algorithms that limit this error in the yaw angle of ~.5 degree per
minute when moving, and ~.2 degree per hour when still. For further details, please see the Y aw
Drift page.

Can the navX2-MXP “ Displacement” estimates be used for tracking a FRC or FTC robot’s change in
position (dead-reckoning) during autonomous?

Accelerometer data from the navX-MXP' s onboard MPU-9250 are double-integrated by the navX-
MXP firmware to estimate displacement, and are accurate to approximately .1 meter of error
during a 15 second period.

To track aFRC or FTC robot’ s position during autonomous requires an accuracy of about 1 cm of
error per 15 seconds. While the accuracy of the navX2-MXP displacement estimates might be
good enough to track the position of an automobile on aroad, it istypically too low for usein
tracking a FRC or FTC robot’ s position during the 15 second autonomous period, and employing
a sensor such as a quadrature encoder on the robot drive wheels is recommended.

The root cause of the displacement estimate error rate is accel erometer noise. Estimating
displacement requiresfirst that each acceleration sample be multiple by itself twice (cubed), and
then integrated over time. Practically, if anoisy signal is cubed, the result is very noisy, and when
this very noisy valueisintegrated over time, the total amount of error grows very quickly.

The current noise levels (approximately 60 micro-g per square-root-hertz) would need to be
reduced by approaximately afactor of 10 (one order of magnitude) before displacement estimates
with 1 cm of error per 15 seconds can be achieved by double-integration of accelerometers.

https://pdocs.kauailabs.com/navx-mxp/guidance/yaw-drift/
https://pdocs.kauailabs.com/navx-mxp/guidance/yaw-drift/

Overview
Frequently-asked Questions

MEMS accelerometers featuring even lower noise levels than the ISM330DHCX continue to
emerge, but also continue to be very expensive. Kauail abs actively researches these technology
developments — efforts that led to the selection of the ISM330DHCX for navX2-MXP —and
projects that MEM S technology that is both (a) low noise (1 micro-g per square root hertz) and (b)
available at low cost will likely occur in the next decade, but technology has not advanced to this
point yet. Kauail abs plans to develop a product which can be used for accurate accel erometer-
based dead-reckoning at that time.

All that said, the navX2-MXP Displacement estimates are far more accurate than those possible
wit the “Classic” navX-MXP, and with very careful mounting and under controlled
circumstances, navX2-MXP Displacement estimates may be sufficient for tracking robot position
in certain cases; however we believe other technologies are likely more appropriate for most FRC
teams.

Installation
Installation

I nstallation
| nstallation

Plug-n-play: navX2-MXP —just like the “Classic” navX-MXP —is designed for rapid,
plug-n-play installation on a National Instruments RoboRIO™, making it easy to install and integrate
onto robots including a FIRST FRC Robot. havX 2-M X P and supports plug-n-play installation onto an
Android-based FTC Raobot.

Orientation: Tipsand tricks for ensuring navX2-M X P measurements are aligned with your robot,
including the new Omnimount flexible mounting feature.

I/0O Expansion: In addition to sophisticated motion processing, navX 2-M XP also provides analog and
digital 1/0 expansion on a RoboRIO.

Flexibility: To allow flexible customization, navX2-MXP also supports severa alternative installation
options as well as several communication options, providing flexibility when integrating with other
components.

Enclosure: To protect an installed navX2-M XP, an enclosure is available — which can be either
purchased, or printed on a 3D printer using open-source design files.

RoboRI O Installation

navX2-MXP is designed for plug-n-play installation onto the National Instruments RoboRIO™. This
installation takes about only aminute. To install, smply place the 34-pin “MXP’ Connector on the
bottom of the navX2-MXP circuit board into the corresponding MXP slot on the top of the RoboRIO, as
shown below.

https://pdocs.kauailabs.com/navx-mxp/installation/roborio-installation/
http://pdocs.kauailabs.com/navx-mxp/installation/ftc-installation/
http://pdocs.kauailabs.com/navx-mxp/installation/ftc-installation/
https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/
https://pdocs.kauailabs.com/navx-mxp/examples/mxp-io-expansion/
https://pdocs.kauailabs.com/navx-mxp/examples/mxp-io-expansion/
https://pdocs.kauailabs.com/navx-mxp/installation/orientation/
https://pdocs.kauailabs.com/navx-mxp/installation/orientation/
https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/

Installation
RoboRIO Installation

%

—
Q
-
o
)
c
e
Q
o
=
W

- -

= I_.Bt."r_l_.ll A armarWarRmAry T
g l._.i.__wll.‘...l!h B ey e e R

L Nt 90TvNY - T T

EEE.R:_R
TYNOLLYN

Y (Roll) +
0 X {Pitch) +

10

Installation
RoboRIO Installation

Securing navX2-MXP to the RoboRIO

Next, secure navX2-MXP to the RoboRIO using two #4-40 screws, each with alength of 3/16th inch.
Y ou can also use a 1/4 inch-long screw if you place a small washer between it and the top of the navX-
MXP circuit board.

Image not found

Securing the navX2-M XP circuit board and RoboRIO to the robot chassis

The navX2-MXP circuit board should be mounted such that it is firmly attached to the robot chassis. The
quality of this mounting will be directly reflected in the quality of navX2-MXP inertial measurements.
To ensure quality, carefully follow these guidelines:

¢ The RoboRIO on which the navX2-MXP circuit board is placed should be tightly mounted; it
should be a part of the chassis mass, and should move exactly as the chassis moves. Avoid
mounting the navX2-MXP circuit board in an area of the chassis that might be flexible, asthis
could introduce vibration to the inertial sensors that does not represent the chassis inertial
properties.

e The navX2-MXP circuit board should be mounted in the center of the chassis, which ensures the
origin of the yaw/pitch/roll axes truly represent the chassis center.

¢ Be sureto understand the orientation of the navX2-MXP circuit board, relative to the chassis, and
decide whether OmniMount is needed.

¢ Housing the navX2-MXP circuit board in some form of protective enclosure is highly
recommended, to protect it from damage. This should both protect the circuit board from damage,
and provide strain relief for the cables that connect to the navX2-MXP circuit board.

(Note that there are several other installation options available.)

FTC Installation

navX2-MXP can be easily used with the FTC Android-Based Robot Control System. Both power to and
signaling to/from the navX2-MXP occurs via the | 2C interface by way of either a Expansion Hub or
a Control Hub from REV Robaotics.

11

https://pdocs.kauailabs.com/navx-mxp/installation/orientation-2/
https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/
https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/
https://pdocs.kauailabs.com/navx-mxp/installation/orientation/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1595/

Installation
FTC Installation

e
—

Electrical Wiring Instructions

e Select one of the 4 12C ports on the Hub, as shown above. Note that the ports are numbered from
0.

e Using al2C to JST PH Cable, connect the +5V, Data (SDA), Clock (SCL) and GND pinsto the
corresponding pins on the navX2-MXP External 12C Port Connector.

NOTE: Thel2C to JST PH Cable linked-to above has a different pin out on the .1? (* Molex™) black
plastic header-side than found on the navX2-MXP connector shown below. Therefore you likely need to
re-order the pins on this end of the connector to correctly match the navX2-MXP pinout, by carefully
removing and re-inserting the wire leads into the connector.

12

https://i1.wp.com/pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2020/09/JST_PH_Sensor_Cable_to_Expansion_Hub.jpg?ssl=1
https://www.kauailabs.com/store/index.php?route=product/product&product_id=68
https://i0.wp.com/pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2020/09/I2C_JST_PH_Cable_Harness.jpg?ssl=1

Installation
FTC Installation

e Connect the Power (+), Data (SDA), Clock (SCL) and GND pinsto the corresponding pins on the
navX2-MXP External 12C Port Connector.
e The Harness wires are colored as follows:
o Black: Ground
o Red: Power
Yelow: SDA
Blue: SCL

o

o

NOTE: Although the navX2-MXPistypically powered via 5V DC when used with the RoboRI O,
navX2-MXPisfully 3.3V compatible, and thus may be powered viathe Expansion or Control Hub.

Electrical Wiring Verification

If properly wired, when power is applied to the Expansion or Control Hub, the Red 3.3V LED on the
navX2-MXP should light up.

If trouble occurs communication with the navX2-MXP, double-check that the SDA and the SCL wires on
the Expansion Control Hub match the corresponding pins on the navX2-MXP.

Physical I nstallation on the Robot

The navX2-MXP circuit board should be mounted such that it is firmly attached to the robot chassis. The
quality of this mounting will be directly reflected in the quality of navX2-MXP inertial measurements.
To ensure quality, carefully follow these guidelines:

e Whereever the navX2-MXP circuit board is placed, it should be tightly mounted; it should be a
part of the chassis mass, and should move exactly as the chassis moves. Avoid mounting the
navX2-MXP circuit board in an area of the chassis that might be flexible, as this could introduce
vibration to the inertial sensors that does not represent the chassis inertial properties.

e The navX2-MXP circuit board should be mounted in the center of the chassis, which ensures the
origin of the yaw/pitch/roll axestruly represent the chassis center.

e Be sureto understand the orientation of the navX2-MXP circuit board, relative to the chassis, and

13

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/10/navx_mxp_external_i2c_port_closeup.jpg
https://pdocs.kauailabs.com/navx-mxp/installation/orientation-2/

Installation
FTC Installation

decide whether OmniMount is needed.

¢ Housing the navX2-MXP circuit board in some form of protective enclosure is highly
recommended, to protect it from damage. This should both protect the circuit board from damage,
and provide strain relief for the cables that connect to the navX2-MXP circuit board.

Orientation

navX2-MXP measures atotal of 9 sensor axes (3 gyroscope axes, 3 accelerometer axes and 3
magnetometer axes) and fuses them into a 3-D coordinate system. In order to effectively use the values
reported by navX2-MXP, afew key concepts must be understood in order to correctly

install navX2-MXP on arobot.

3-D Coordinate System

When controlling arobot in 3 dimensions a set of 3 axes are combined into a 3-D coordinate system, as
depicted below:

In the diagram above, the green rounded arrows represent Rotational motion, and the remaining arrows
represent Linear motion.

AXis Orientation Linear motion Rotational Motion

X (Pitch) Left/Right —Left/ + Right + Tilt Backwards

Y (Roll) Forward/Backward + Forward / — Backward + Roll Left

Z (Yaw) Up/Down + Up/—Down + Clockwise/ — Counter-
wise

More details are available on the Terminology page.

14

https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/
https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/
https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/06/TriAxis.png
https://pdocs.kauailabs.com/navx-mxp/guidance/terminology/

Installation
Orientation

Reference Frames

Note that the 3-axis coordinate system describes relative motion and orientation; it doesn’t specify the
orientation with respect to any other reference. For instance, what does “ |eft” mean once a robot has
rotated 180 degrees?

To address this, the concept of areference frame was developed. There are three separate three-axis
“reference frames’ that should be understood:

Coordinate Technical Term X Axis Y Axis

System

Field World Frame Side of Field Front (Head) of Field
Robot Body Frame Side of Robot Front (Head) of Robot
navX2 M XP Board Frame See diagram Below See diagram below

Joysticks and Reference Frames

Since athree-axisjoystick istypically used to control arobot, the robot designer must select upon
which Reference Framethedriver joystick isbased. This selection of Reference Frametypically
depends upon the drive mode used:

Drivemode Reference Frame Coordinate Orientation
Standard Body Frame Forward always points to the
Drive front (head) of the robot
Field-orientedWorld Frame Forward always points to the
Drive front (head) of the field

navX2-M XP Board Orientation (Board Frame)

Aligning Board Frame and Body Frame

15

https://en.wikipedia.org/wiki/Frame_of_reference
https://pdocs.kauailabs.com/navx-mxp/examples/field-oriented-drive/
https://pdocs.kauailabs.com/navx-mxp/examples/field-oriented-drive/

Installation
Orientation

In order for the navX2-MXP sensor readings to be easily usable by a robot control application, the
navX2-MXP Coordinate System (Board Frame) must be aligned with the Robot Coordinate system (Body
Frame).

Aligning the Yaw (Z) axis and Gravity

The navX2-MXP motion processor takes advantage of the fact that gravity can be measured with its
onboard accelerometers, fusing this information with the onboard gyroscopesto yield a very accurate yaw
reading with alow rate of drift. In order to accomplish this, the yaw (Z) axis must be aligned with the
“gravity axis’ (the axisthat points directly up and down with respect to the earth).

When installing navX2-M XP on arobot, the navX-MXP yaw (Z) axis and the gravity axis must be
aligned.

Default navX2-M XP Board Orientation

The default navX2-M XP circuit board orientation iswith the navX2-M XP logo on the Rear Left,
with the top of the circuit board pointing up (with respect to the earth).

Since Body Frame and Board Frame coordinates should be aligned, and because the Y aw axis must be
aligned with gravity, by default you must orient the navX2-MXP with the top of the board facing up, and
with the Y axis (on the circuit board) pointing to the front of the robot.

If you need to mount the navX2-MXP circuit board in a different orientation (vertically, horizontally,
or upside down), you can use the OmniMount feature to transform the orientation.

16

https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/

Installation
Orientation

%

—
Q
-
o
)
c
e
Q
o
=
W

-

= ?id";‘l . R S T S

T l._.i.__wll.‘...l!h D e S

L Nt 90TvNY - T T

EEE.R:_R
TYNOLLYN

Y (Roll) +
0 X (Pitch) +

17

Installation
Orientation

OmniMount

If the navX2-MXP default yaw axis orientation isn’t sufficient for your needs, you can use the
OmniMount feature to re-configure the navX2-MXP yaw axis, alowing high-accuracy yaw axis
readings when navX2-MXP is mounted horizontally, vertically, or even upside down.

In certain cases, the navX2-MXP axes (Board Frame) may not be oriented exactly as that of the Robot
(Body Frame). For instance, if the navX2-MXP circuit board is plugged directly into the RoboRIO-MXP
connector, and the top of the RoboRI O (the edge on which the USB connectors are mounted) is pointing
up with the top side of the RoboRio pointing towards the front of the robot, the navX2-MXP axes will not
be oriented identically to the Robot. This configuration is shown in the diagram below:

18

https://pdocs.kauailabs.com/navx-mxp/installation/orientation-2/

Installation
OmniMount

Robot Orientation

Transforming navX2-M XP Board Frameto Body Frame with
OmniM ount

The navX2-MXP s“OmniMount” feature can transform the navX2-MXP X, Y and Z axis sensor data
(Board Frame) into Robot Orientation (Body Frame) by detecting which of its three axes is perpendicular
to the earth’ s surface.

Thisis similar to how a modern smart phone will rotate the display based upon the phone’s orientation.
However unlike a smart phone, the OmniMount detection of orientation does not happen all the time —
since the orientation should not change while the robot is moving. Rather, each time OmniMount
configuration occurs, navX 2-MXP records this transformation in persistent flash memory, and will
continue to perform this transformation until the transform is reconfigured.

To configure OmniMount, follow these simple steps:

19

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/06/RobotVersesNavXMXPOrientation.png

Installation
OmniMount

e Install the navX2-MXP circuit board onto your robot. ENSURE that one of the navX2-MXP axes
(as shown on the navX2-MXP circuit board) is perpendicular to the earth’ s surface. This axis will
become the yaw (Z) axis. Note that this axis can either be pointing away from the earth’ s surface,
or towards the earth’s surface.

e Pressthe‘CAL’ button on the navX2-MXP Circuit board AND HOLD THE BUTTON DOWN
FOR AT LEAST 5 SECONDS.

e Releasethe'CAL’ button, and verify that the orange * CAL’ light flashes for 1 second and then
turns off.

e Pressthe ‘RESET’ button on the navX2-MXP circuit board, causing it to restart.

e The navX2-MXP circuit board will now begin OmniMount auto-calibration. During this auto-
calibration period, the orange ‘ CAL’ LED will flash repeatedly. This process takes
approximately 15 seconds, and requires two things:

o 1. During auto-calibration, one of the navX2-MXP axes MUST be perpendicular to the
earth’s surface.

o 2. During auto-calibration, navX2-MXP must be held till.

o If either of the above conditionsis not true, the ‘CAL’ LED will flash quickly, indicating
an error. To resolve this error, you must ensure that conditions 1 and 2 are met, at which
point the ‘CAL’ LED will begin flashing slowly, indicating calibration is underway.

e Once navX2-MXP auto-calibration is complete, the Board Frame to Body Frame Transform will
be stored persistently into navX2-MXP flash memory and used until auto-calibration is run once

again.
/O Expansion

navX2-M XP breaks out all usable signal pins on the National Instruments RoboRIO™ / MyRIO MXP
Connector.

20

Installation
I/O Expansion

USB Interface

MXP Breakout: Digital I/O, Analog In, Analog Out, Voltage Select

L

o &
&
L4
._".
&
q
i
-
..
.
®,
%
%
»
e

AT

€

'
'3
-
&
&
2,
-
&

[o

MXF Breakout; TTL UART, 5Pl & 12C Interfaces

MxP
Connector
(underneath)

TTL UART,
5P1 Enable

21

Installation
I/O Expansion

DC Voltage Selection

Using the provided jumper, select the DC Voltage which will be routed to each of the connector blocks.
Select from either 3.3V or 5V DC. Thisregulated voltage is supplied directly by the host computer (e.g.,
the RoboRIO).

/O Summary

Each of the 1/0 pins on the MXP connector has a corresponding 3-pin connector (DC Voltage, Ground
and Signal). The orientation of the Ground, Power and Signal pins for each of the Digital 1/0, Analog
Input and Analog Output pinsis as follows:

Ground Power
"9 876543210 /32710 10

Kaua - Elﬂﬂiﬂ

Labs -

Diqital 1/Os

Each of the 10 Digital 1/0 pins may be configured for use as either Digitallnputs or Digital Outputs, PWM
(Outputs) or Counters (Inputs).

Additionally, multiple (either 2 or 3) DigitalInputs may be used to form an QuadratureEncoder input.

Digitallnput/Digital Output Addressing

navX2-MXP Port MXP Pin Number RoboRIO Channel Address
0 DIOO 10
1 DIO1 11
2 DIO2 12
3 DIO3 13
4 DIO8 18
5 DIO9 19
6 DIO10 20
7 DIO11 21
8 DIO12 22

22

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/navx-mxp-digital-io-pin-closeup.png

Installation
I/O Expansion

9 DIO13 23

PWM Output Addressing

navX2-MXP Port MXP Pin Number RoboRIO Channel Address
0 PWMO 10
1 PWM1 11
2 PWM2 12
3 PWM3 13
4 PWM4 14
5 PWM5 15
6 PWM6 16
7 PWM7 17
8 PWM8 18
9 PWM9 19

NOTE: The MXP connector has 2 Digital 1/0 pins which are dedicated to the 12C interface. MXP Digital
[/0 Pin DIO14 isused for 12C SCL and DIO15 is used for 12C SDA. Since the navX2-MXP 12C interface
is always active, these pins must not be used for any other purpose.

Analog Inputs

Each of the 4 Analog Input pins on the MXP connector has a corresponding 3-pin connector (DC
Voltage, Ground and Signal). On the RoboRI O, these signals are routed to the internal Analog-to-Digital
Converters (ADCs).

Analog Input Addressing

navX2-MXP Port MXP-Pin Number RoboRIO Channel Address
O*** AlO 4
1x** All 5
2 Al2 6
3 Al3 7

Analog Outputs
Each of the 2 Analog Output pins on the MXP connector has a corresponding 3-pin connector (DC

Voltage, Ground and Signal). On the RoboRI O, these signals are generated by the host computer’s
internal Digital-to-Analog Converters (DACS).

Analog Output Addressing

navX2-MXP Port MXP Pin Number RoboRIO Channdl Address
0 AOO0 0
1 AO1 1

23

Installation
I/O Expansion

|12

The navX2-MXP |2C connector can be used to connect the RoboRIO to an external 12C Device. The
RoboRIO functions as an 12C Master. The connector provides DC Voltage, Ground, Clock (SCL) and
Data (SDA).

Note that this 12C connector resides on the same 12C bus which may optionally be used to communicate
between the RoboRIO and the navX2-MXP' s onboard processor. navX2-MXP uses 12C Address 50
(0x32), so be sure that any external 12C device does not use this address.

SPI

The navX2-MXP SPI connector can be used to connect the RoboRIO to an external SPI device. The
RoboRI O functions as an SPI Master. The connector provides DC Votage, Ground, Clock (SCK), Slave
Select (SS), Master-in/Slave-out (M1SO) and Master-out/Slave-in (MOSI) signals.

Note that this SPI connector resides on the same SPI bus which may optionally be used to communicate
between the RoboRIO and the navX2-MXP' s onboard processor. navX2-MXP will respond to the Slave
Select signal if and only if the SPI Enable dip switch is set to the “ON” position. Thus, the SPI Enable dip
switch should be set to the “OFF” position if you wish to communicate with an external device viathe
SPI connector.

TTL UART

The navX2-MXP TTL UART connector can be used to connect the RoboRIO to an external TTL-level
UART device.

NOTE: The TTL UART connector cannot be used to connect to an external RS-232 signal, since RS-232
voltages are much higher than TTL-level UART voltages. Connecting a higher-voltage RS-232 device to
the TTL UART connector may subject the RoboRIO to damaging voltage levels on these pins.

Note that this TTL UART connector can be used to communicate between the RoboRIO and the
navX2-MXP' s onboard processor (in fact, thisis the default). navX2-MXP will respond to the UART TX
signal from the RoboRIO if and only if the UART Enable dip switch is set to the“ON” position. Thus,
the UART Enable dip switch should be set to the “ OFF’ position if you wish to communicate with an
external deviceviathe TTL UART connector.

Alternative Installation Options

In addition to Plug-n-Play installation on the Nationa Instruments RoboRIO™, navX2-MXP' sflexible
design accommodates several additional installation options.

24

https://pdocs.kauailabs.com/navx-mxp/installation/roborio-installation/

Installation
Alternative Installation Options

One-wire Connect via " Floppy-disk” extension cable

If mounting the navX2-MXP circuit board directly into the RoboRIO’ s onboard M XP connector is not
possible, a*“Floppy-disk” extension cable can be used to place the navX2-M XP circuit board up to afew
feet away from the RoboRIO. Thisinstallation method supports the I/O expansion capabilities, since all
MXP connector signals are carried over the extension cable.

Note that higher-speed signals such as those found on the SPI and |2C bus, and noise-sensitive analog
signals like those on the Analog Input and Output pins may be negatively impacted by longer distances
and electro-magnetic interference, so high quality shielded cabling and shorter distances may be called
for.

These extension cables are available online at AndyMark:

Image not found

One-wire Connect viaUSB cable

By using aUSB Mini-B type (Male) to USB A type (Male) connector, navX2-MXP can receive both
power and also communicate with the RoboRIO.

Thisinstallation method allows the navX2-MXP circuit board to be placed longer distances away from
the RoboRI O than via the “Floppy-disk” extension cable method. However, this installation method does
NOT support the MXP 1/0O expansion capabilities, since the MXP connector signals are not routed over
the USB cable.

L ow-level Connect via Power and Signal pins on MXP Connector

If any of the “one-wire” methods described above is not desirable, you may also interface to the
navX2-MXP circuit board using the Power, Ground and 12C/SPI/TTL UART signals on the MXP
Connector.

25

https://www.andymark.com/product-p/am-2997.htm
https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/usb_minib_cable.png

Installation
Alternative Installation Options

GND

" HEHEHBEIEEEB 12¢
g & & EFEEFEEES H B SDA SCL
g 2 E & &
1 I._.|_,, i =l N U ol

1 5| 37| 3% 3% 1 i " |

e é g - L8 =

HHHBHH

HEH SVDC
138:3828:8:¢8 s B MOSI MISO CLK CS
ToAcB8sAc@EacAacradl SPI

To use the | 2C interface without directly plugging the navX2-MXP circuit board into the RoboRIO MXP
connector, first ensure that the navX2-MXP circuit board has power (either viathe USB connector, or via
the +5VDC pin on the MXP connector).

Next, make sure that the digital ground from the host computer (e.g., the RoboRIO) is connected to one of
the GND pins on the MXP connector.

Finally, connect the SDA and SCL pins on the host computer (e.g., the RoboRIO) to the corresponding
SDA and SCL pins on the navX2-MXP circuit board.

Note that the I2C bus expects that the SDA and SCL pins be pulled up with a pull-up resistor on each
line. The RoboRIO internally pulls these lines high.

The |2C pins are 5V tolerant, so the host computer can use either 5V or 3.3V DC levels on these pins.

SPI
To use the SPI interface without directly plugging the navX2-MXP circuit board into the RoboRIO MXP
connector, first ensure that the navX2-MXP circuit board has power (either viathe USB connector, or via

the +5VDC pin on the MXP connector).

Next, make sure that the digital ground from the host computer (e.g., the RoboRIO) is connected to one of
the GND pins on the MXP connector.

Finally, connect the CS, CLK, MISO and MOSI pins on the host computer (e.g., the RoboRIO) to the
corresponding CS, CLK, MI1SO and MOSI pins on the navX2-MXP circuit board.

The SPI pins are 5V tolerant, so the host computer can use either 5V or 3.3V DC levels on these pins.

Creating an Enclosure

26

Installation
Creating an Enclosure

The navX2-MXP circuit board contains sensitive circuitry, and should be handled carefully.

An enclosure is recommended to protect the navX2-MXP circuit board from excessive handling, “swarf”,
electro-static discharge (ESD) and other elements that could potentially damage the navX2-MXP
circuitry. The enclosure can aso help prevent accidental shorts to ground which may occur on the MXP
Expansion /O pins.

NOTE: The enclosure discussed below is compatible with both the “ Generation 2” navX2-MXP as well
asthe“Classic” navX-MXP circuit board.

Build vs. Buy

Those who prefer to print the enclosure using their personal 3D printer, an enclosure design file (in STL
format) is available in the “enclosure” directory of the.

Those who prefer to purchase the enclosure can order it from Shapeways (which takes approximately 2
weeks to deliver), or at the Kaual Labs store if you'rein ahurry. The price including shipping will be
approximately $20, depending upon the type of material used.

Design Files

The enclosure design files include:

e navx-mxp.skp: Sketchup 3D Design File for the navX2-MXP / navX-MXP circuit boards

e navx-mxp-roborio-lid_v4.skp: Sketchup 3D Design File for alid-style enclosure for the
navX2-MXP/ navX-MXP circuit boards. Note that the design file scale is 1000X actual size, so
will need to be scaled down by afactor of 1000 before printing.

e navx-mxp-roborio-lid_v4 scaleddown.stl: STL Format File for 3d printing the lid-style enclosure
for the navX2-MXP / navX-MXP circuit boards. This file contents have been scaled to their actual
size.

27

https://en.wikipedia.org/wiki/Swarf
https://www.shapeways.com/shops/kauailabs
https://www.kauailabs.com/store/index.php?route=product/product&path=62&product_id=58
http://www.kauailabs.com/store/index.php?route=product/product&path=62&product_id=58

Installation
Creating an Enclosure

Printing and Customizing the Enclosure

The Sketchup (.skp) files can be edited using Sketchup Make. Then, the files can be exported to a STL
format using the Sketchup STL Import/Export extension. Finally, these exported STL format files can be
opened and 3d-printed using netfabb.

Securing the Enclosure

The Lid Enclosure can be secured to the RoboRIO by two #4-40 1/2? screws. Thiswill secure not only
the Lid, but will also secure the navX2-MXP circuit board.

Note that when using the Lid Enclosure, the required screw length istypically longer than the default
screws which are included with navX2-MXP.

28

https://www.sketchup.com/
https://www.autodesk.com/products/netfabb/overview

Software
Software

Softwar e
Software

navX2-M XP includes software which makes navX2-MXP easier to understand, integrate
and use with FIRST FRC and FTC robots than other navigation technol ogies and products available
today. This software (which is backwards-compatible with the “Classic” navX-MXP sensor) includes the
following components:

e FRC RoboRIO Librariesfor accessing navX2-MXP from a National Instruments
RoboRIO™-based robot

e An ETC Android Library for accessing navX2-MXP from an Android-based FTC Robot Control
Application.

e Librariesfor accessing navX2-MXP from Linux and Arduino.

e The navXUI, which demonstrates navX2-M XP capabilities

For advanced users, several calibration/configuration tools are also available.

Note: For developers on Linux and Mac OS platforms, the latest non-Windows RoboRIO (FRC)/Android
(FTC) libraries build is also available. Please note that this build does not contain any of the navX2-MXP
tools, but does contain the RoboRIO and Android libraries.

RoboRIO Libraries

navX2-MXP libraries for use with the RoboRIO Libraries from WPI are available in each of the
languages/development environments commonly used to development FIRST FRC robot applications:

>
QO

@)
+

C++
e | abVIEW navX-AE

These libraries provide access to a navX2-MXP sensor (as well asthe “Classic” navX-MXP sensor) via
SPI, 12C and USB and UART —aswell as USB and 12C interfaces to navX2-Micro, and USB Interfaces

to VMX-pi.

[Update: 1/8/2020 — Version 3.1.400 is now available —which is compatible with the FRC 2020.1.2
(Kickoff) Release. For more details on installation, see the page corresponding to your chosen
development language.]

29

https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/
https://pdocs.kauailabs.com/navx-mxp/android-library-ftc
https://pdocs.kauailabs.com/navx-mxp/software/linux-library/
https://pdocs.kauailabs.com/navx-mxp/software/arduino-library/
https://pdocs.kauailabs.com/navx-mxp/software/navx-mxp-ui/
https://pdocs.kauailabs.com/navx-mxp/software/tools/advanced-configuration/
https://www.kauailabs.com/public_files/navx-mxp/navx-mxp-libs.zip
https://www.kauailabs.com/public_files/navx-mxp/navx-mxp-libs.zip
https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/java/
https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/c/
https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/labview/
https://pdocs.kauailabs.com/navx-micro/
https://pdocs.kauailabs.com/vmx-pi/

Software
RoboRIO Libraries

Android Library (FTC)

daN>D=X0ID

NOTE: The 2019 Version of the navX-sensor Android Library for FTC has currently been tested with the
FTC “ftc_app” library for the 2019 season, and has been verified to operate correctly with the REV
Expansion and Control Hubs.

The navx_ftc Android software library supports access to navX-Model devicesviathe 12C
communication interface. Several example programs are provided, demonstrating how to use a navX-
Model devicein a FTC-based robot control application.

Tousethelibrary, you can download the of thelibraries, or you can checkout the sour ce code with
Git. Tolearn more about thelibrary, online help isavailable.

Getting Started

Before getting started, ensure you have installed Android Studio and the indicated Android Studio Project
components linked to on the FIRST Tech Challenge Programming Resources page.

Several sample Java Robot Applications are provided. After running the setup program included in the
latest build, the libraries and samples will be installed to the following location:

<HomeDirectory>\navx-mxp\android

For example, if your user name is Robot, the directory name will be C:\Users\Robot\navx-mxp\android.

Within this directory, the “examples’ sub-directory contains several example programs. Select the
example you wish to start with and copy it into your project as follows:

e Copy one or more of the example navX-Model “op modes’ files from the <HomeDirectory>\navx-
mxp\android\examples directory into your project’s “TeamCode” top-level directory. (i.e.,
org.firstinspires.ftc.teamcode).

30

https://i2.wp.com/pdocs.kauailabs.com/navx-micro/wp-content/uploads/2015/10/android2.jpg
https://github.com/kauailabs/navxmxp/tree/master/android/navx_ftc
https://www.kauailabs.com/public_files/navx-micro/apidocs/android
https://developer.android.com/sdk/index.html
https://www.firstinspires.org/resource-library/ftc/technology-information-and-resources
https://www.kauailabs.com/public_files/navx-micro/navx-micro.zip

Software
Android Library (FTC)

Next, several configuration changes must be made in order that the Android Studio ftc_app-based project
can locate the navx_ftc library:

e Modify any of the op mode example files to change the following line near the top of thefileto
match the “Device name” given to the 12C port on the REV Expansion or Control Hub to which
you have connected the navX-Model device. By default, the Device nameis* navx” .

navx_devi ce = AHRS. get | nst ance(har dwar eMap. get (NavxM cr oNavi gati o
nSensor. cl ass, "navx"), AHRS. Devi ceDat aType. kProcessedDat a) ;

See FTC Robot Installation for details on configuring the Device name.

e Modify your robot application’s (the “TeamCode” project) build.release.gradle file repository list
to add areference the directory where the navx_ftc library isinstalled:

repositories {
flatDir {
dirs "libs', "C\\Users\\Robot\\navx- mxp\\android\\Iibs’

}
}

e Againin the same build.release.gradle file, add the navx_ftc library to thelist of libraries the
ftc_app will link to — by adding this line near the bottom of the gradle build file, in the
dependencies section:

dependenci es {

conpil e (name: ' navx_ftc-rel ease', ext:'aar')

Linux/MacOSdistribution

For developers on Linux and Mac OS platforms, the latest non-Windows build is also available. Please
note that this build does not contain any of the navX2-Micro tools, but does contain the RoboRIO and
Android libraries.

Thisdistribution is packaged as a .zip file; unzip the file and follow the instructions in the readme.txt file
in the top-level directory.

Once you have installed the Android libraries onto your computer, use the instructions in the Getting
Started section above to use the library. However, you will need to replace “ C:\User s\Robot\navx-mxp”
in several places shown above with the corresponding path on Linux/MacOS where you installed the

31

https://pdocs.kauailabs.com/navx-micro/installation/robot-installation/
https://www.kauailabs.com/public_files/navx-micro/navx-micro-libs.zip

Software
Android Library (FTC)

Android libraries, including the “ repositories’ section of the build.release.gradle file:
repositories {

flatDir {
dirs '"libs',"'/Users/Robot/navx-nxp/android/li bs'

}

Linux Library

.

LINUX

A library for accessing navX2-MXP and navX2-Micro (as well asthe “Classic”
navX-MXP and navX-Micro sensors) from Linux is available. Thislibrary was developed by Alexander
Allen of FRC Team 900 (Zebracorns) and supports the USB interface.

The navX-sensor Linux Library isuseful for integrating with video processors such as the Raspberry-Pl
and the Jetson TK1 and TX1.

Tousethelibrary, you can checkout the sour ce code with Git. Online help isalso available.

Getting Started

After checking out the source code with Git into a directory on your Linux OS, compile the library using
CMake.

The file Timestamp.cpp demonstrates how to integrate the library into your application; you will need to
identify the Linux serial port name to use, asfollows:

AHRS ahrs = AHRS("/dev/ttyACM");

Sensor data values can be retrieved after the completion of the AHRS constructor.

Arduino Library

32

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/12/linux-icon-28178.png
https://github.com/FRC900/navXTimeSync
https://cmake.org/runningcmake/

Software
Arduino Library

A library for accessing nav2X-MXP and navX-Micro (aswell as*“Classic” navX-
MXP and navX-Micro sensors) from Arduino is available. Thislibrary supports the 12c and SPI
interfaces.
The navX-sensor Arduino Library is useful for integrating a navX-sensor into Arduino-based project.

Tousethelibrary, you can checkout the sour ce code with Git.

Getting Started

After checking out the source code with Git into a directory on your computer, compile using the Arduino
IDE.

The file navXTestJig.ino demonstrates how to integrate the library into your application. The setup() and
loop() functions in this file demonstrate how to initialize and communicate with the sensor.

navXxXUul

The navXUI user interface application provides a simple way to visualize the data provided by any navX-
Sensor.

33

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2016/12/arduino-icon-17552.png
https://github.com/kauailabs/navxmxp/tree/master/arduino/navXTestJig

Software
navXUl

@ 000U o —— | ™

Magnetic
Disturbance
o Indicator
Gyro Calibration
in process
indicator
Motion
Indicators
Yaw angle

(grey: uncalibrated)
Gravity-corrected
Linear Acceleration

(G)

Pitch/Roll angles

Compass angle
(grey: uncalibrated)

9-axis heading
(grey: unreferenced
sensor
Temperature (C)

Altitude (navX
MXP Aero only)

Gyro Calibration in Progress Indicator

The Gyro Calibration in Progress Indicator is displayed during initial gyroscope calibration, which occurs
immediately after power is applied to the navX-sensor. If the gyroscope calibration does not complete,
the navX-sensor yaw accuracy will be adversely impacted. For more information on Gyro Calibration,
please see the Gyro/Accelerometer Calibration page.

Motion Indicators

The navX-sensor provides dynamic motion indicators: (a) the “Moving” indicator and (b) the “Rotating”
indicator.

The Moving indicator is present whenever the current Gravity-corrected Linear Acceleration exceeds the
“Motion Threshold”.

The Rotating indicator is present whenever the change in yaw value within the last second exceeds the

“Rotating Threshold”. Note that the navX-sensor Gyroscope Calibration only occurs when the navX-
sensor is not Rotating for afew seconds.

Gravity-corrected Linear Acceleration (G)

34

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/navxmxpui_annotated.png
https://pdocs.kauailabs.com/navx-mxp/guidance/gyroaccelcalibration/

Software
navXUl

The navX-sensor automatically subtracts acceleration due to gravity from accelerometer data, and
displays the resulting linear acceleration. These measures are in units of instantaneous G, and are in
World Reference Frame.

Sensor Temperature

The Sensor Temperature indicates the die temperature of the navX-sensor IMU integrated circuit (IC).
Since shiftsin gyro temperature can impact yaw accuracy, the navX-sensor will automatically perform
Gyroscope calibration whenever the sensor is still. See the Gyro/Accelerometer Calibration page for more
details.

Magnetic Disturbance Indicator

Once the navX-sensor Magnetometer has been calibrated (see the Magnetometer Calibration page),
whenever the current magnetic field diverges from the calibrated value for the earth’s magnetic field, a
magnetic disturbance isindicated.

Yaw Angle

The Yaw Angleisdisplayed in grey text if Gyro Calibration has not yet been completed. Once Gyro
Calibration is complete, the Yaw Angle text color will change to white.

Pitch/Roll Angles

The Pitch/Roll Angles are aways displayed in white text, since Accelerometer calibration occurs at the
Kaual Labs factory.

Compass Angle

The Compass Angle displays the tilt-compensated compass heading calculated from the navX-sensor’s
Magnetometer combined with the tip/tilt measure from the Accelerometers.

The Compass Angleis displayed in grey text if Magnetometer Calibration has not yet been completed.
Once Magnetometer Calibration is complete, the Compass Angle text color will change to white.

9-axis (“Fused”) Heading

The 9-axis heading is displayed in grey text if Magnetometer Calibration has not yet been completed
and/or if no undisturbed magnetic readings have occurred.

Altitude

The Altitude displays the navX-sensor’ s calculated current altitude, based upon the reading from the

35

https://pdocs.kauailabs.com/navx-mxp/guidance/gyroaccelcalibration/
https://pdocs.kauailabs.com/navx-mxp/software/tools/magnetometer-calibration/

Software
navXUl

pressure sensor, the current temperature and the sea-level pressure.

The Altitude is displayed in red text if a Pressure Sensor is not installed.

| nstalling/Running the navX Ul

e To run the navXUI, the navX-sensor must be connected to a PC running Windows via USB.

e Make sure Java 7 (version 1.7) or higher isinstalled on your computer. The 64-bit version of Java
isrecommended. To tell which version of javais currently “Active”, open up acommand
window, and type this command:

j ava -version

¢ Download the and unzip the contents to your local computer.

¢ Run the setup.exe program, which will install the navXUI, aswell as all necessary device drivers
for communicating over USB with the navX-sensor, as well as some additional tools.

e Start the navXUI:

From your Start Menu, select “Kaual Labs’” and then the type of navX-Sensor you are using, and click on
the “navXUI” icon to start the navXUI.

If your computer has more than one seria port, you can select which serial port to use by clicking on the
up/down arrows in the COM port selection control in the Ul.

Tools

navX-MXP includes several tools for magnetometer calibration and advanced configuration. These tools
run on a Windows PC and communicate via USB to all navX-sensors.

NOTE: Thesetools are provided for use by advanced users; please carefully read the tool descriptions
before using them.

36

https://pdocs.kauailabs.com/navx-mxp/software/tools/magnetometer-calibration/
https://pdocs.kauailabs.com/navx-mxp/software/tools/advanced-configuration/

Examples
Examples

Examples
Examples

Example source code for various navX-sensor capabilities are available for both for FRC and FTC
Robotics Control Systems.

FRC Examples

This section provides example code for several common navX-sensor applications used by FIRST FRC
teams on their robots to add sophisticated navigation capabilities. These examples are in Java, C++ and
LabVIEW.

e JavalC++
o When you run the setup program contained in the latest build, Java/C++ examples will be
installed to subdirectories underneath \navx-mxp\\examples\vscode (e.g.,
C:\User s\Robot\navx-mxp\cpp\examples\vscode). These examples are compatible with
Vlsua Studio Code.
e LabVIEW
o When you run the setup program contained in the latest build, LabVIEW examples are
installed at:
= \vi.lib\Rock Robotics\WPI\T hirdParty\Sensors\navX
o The LabVIEW Install Directory istypically C:\Program Files (x86)\National
Instruments\LabVIEW 2017.

FTC Examples

If you are looking for FTC examples, please see the navX-Micro Examples.

Field-Oriented Drive (FRC)

37

https://www.kauailabs.com/public_files/navx-mxp/navx-mxp.zip
https://www.kauailabs.com/public_files/navx-mxp/navx-mxp.zip
https://pdocs.kauailabs.com/navx-micro/examples/

Examples
Field-Oriented Drive (FRC)

Front
e LUf

.-""\E (rotation)
X

O O

An easy-to-use, highly-maneuverable drive system is at the heart of a
successful FIRST Robotics Challenge (FRC) robot. Omnidirectional drive systems provide motion in the
Y axis (forward-backward), X-axis (strafe), and Z axis (rotating about it’s center axis). Each “ degree of
freedom” isindependent, meaning that the overall robot motion is comprised of a“mix” of motion in
each of the X, Y and Z axes, control of which is easily provided with a 3-degree of freedom joystick. This
resulting maneuverability is quite useful during FRC competitions to avoid other robots, pick up and
place game pieces, line up for shooting to atarget, etc.

Y et the driver who remainsin afixed position is now presented a new challenge: when the driving
joystick is pushed forward, the robot does not necessarily move forward with respect to the field — rather
it moves forward with respect to the robot. This forces the driver to develop the skill of “placing their
head in the robot” and performing the angular transformation mentally. This skill can take quite awhile to
develop meaning that rookie drivers face an uphill climb before they can be productive team contributors.
Additionally, the mental energy involved in field-to-robot rotational transformations reduces the driver’s
cognitive ability to focus other game-related tactical tasks, as evidenced by drivers who are so intently
focused on driving that their response to their teammates is diminished. Moreover, when the driver does
not have aclear line of sight to the robot, the “head in the robot” becomes even more challenging.

Solving this challenge is conceptually straightforward. First, the current angle (?) of rotation between the
head of the field, and the head of the robot must be measured; secondly, the joystick X/Y coordinates are
transformed by ?, as shown in following pseudo-code:

doubl e rcw = pJoystick->CGet Twi st();
double forwd = pJoystick->GetY() * -1; /* Invert stick Y axis */
doubl e strafe = pJoystick->Get X();

float pi = 3.1415926;
/* Adjust Joystick X/'Y inputs by navX MXP yaw angle */

doubl e gyro_degrees = ahrs->Cet Yawm) ;

fl oat gyro_radians = gyro_degrees * pi/180;

float tenp = forwd * cos(gyro_radians) +
strafe * sin(gyro_radians);

strafe = -forwd * sin(gyro_radians) +
strafe * cos(gyro_radians);

38

https://www.firstinspires.org/robotics/frc

Examples
Field-Oriented Drive (FRC)

fwd = tenp;

[* At this point, Joystick XY (strafe/forwd) vectors have been
*/
/* rotated by the gyro angle, and can be sent to drive system */

The WP Library “MecanumDrive_Cartesian()” function and the LabView “Holonomic Drive’ VI,
which are used in the examples below, implement the field-centric drive algorithm. The navX-sensor
“Yaw” angleis provided to these library functions to specify the amount of rotation between the robot
and the field.

For more details on field-centric drive algorithms, please see this excellent post on Chief Delphi by Ether

which provides a wealth of helpful, well written information on implementing field-centric drive on
various types of drive systems.

FRC C++ Example

Full C++ source code on GitHub

FRC Java Example

Full Java Source code on GitHub

FRC LabView Example

The navX-sensor FieldCentric-Drive LabView example shows how to make small modifications to the
LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to implement high-
accuracy Field-Centric drive.

RobotM ain.vi

Place the NavX main vi on the block diagram and set it up to your needs. The default samplerateis
50Hz. Y ou may need to process faster for your situation. For the SPI, 12C and USB connections the max
samplerate is 200Hz.

39

https://www.chiefdelphi.com/media/papers/2390
https://github.com/kauailabs/navxmxp/blob/master/roborio/c%2B%2B/navXMXP_CPP_FieldCentricDrive/
https://github.com/kauailabs/navxmxp/blob/master/roborio/java/navXMXP_Java_FieldCentricDrive/

Examples
Field-Oriented Drive (FRC)

E? Robot Main.vi Block Diagram on 2017 Robaot Project2. bvproj/ Target * - O 4
File Edit View Progect Operate Tools Window Help
*| Sesrch 4 b @
-

o s n g 85 vog .o |15pt Apphcation Font = | foe o b B

Documentation Scheduling leop

Robiot Main implements the framewsdk &

and peheduler (o your rebatsos program.

Enable Vision [TER { HEnable Vision
It shauld not be nacessang to modify this .
Vou should be able to code youwr robot Image Size [T— » @imege sze
hwithin the Team Vs described below.
"'|I.'H.nb-ut Mode=
“Taleop Enabled” =k

1. Beginuwi
Called ance st begnning, to open 110,

inatialize sensars and any globals, load

Jeettings from a file, etc. Finish

2. Autonomous Independent.yi
Automatically started with the first

I:lclﬂ of automomeaous and aberted on the
[

- |
ast pachket. Write this Team V] to locp for I 1

Exacute Teleop W1 to react
a neeswt Diriveer Station packet

e enfirety of the sutonomous pericd.

3, TebeDp v

Called wach tirme a tebeop D5 packet is
received and robiot is enabled.
|4, Dicsbledvi ased on the robot mode, call the appropriate Team code

ICH"EleId'It'H'HE a pachet is recerved and m puble click an icon to open a Tesm V1 and micdify code

fthe rokict is disabled. T
B inafialize robot

Pl E I Saaniup & Smatdashboad Tetwork Tables 5 ([A

Called Automatically starbed with the first e g e e e

packet and sborted on the last, —— Bunsmp with uier code. Add the nav Mains to your
adify this ¥l to carny out rebot and RabotMain and select &
sensor validation tests. Start Robot Comemunication. cormmgnication infer ace.
E Funs in parallel with user code. v Mainvi must not be placed in

B, Vision.vi ¢ Scheduling leop above.

A parallel loop that scquires and Acquire carmsenm images and =
PrOCESSEs CATIENS IMages. process them in parallel with =

1 other loops. Pl -

7. PeiodicTasks.vi |

Fasallel lcops runnang at user-defined Camy out paricdic tasks puch
eacac > 1 a5 control loops. h, r

2017 Robot Presect? vesoy Tanaet © »

Teleop.vi

The Teleop.vi is modified to feed the current navX-sensor “Yaw” angle reading to the Holonomic Drive
VI, which rotates the joystick X/Y coordinates by the gyro angle (and thus implements FieldCentric drive
control). Additionally, if adriver joystick button is pressed, the navX-sensor “Yaw” angleisreset to zero.
The navX Device TypeDef is passed to the Teleop.vi viaa VI input terminal.

40

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Field-Oriented Drive (FRC)

Teleopd ield CentracDrrve s Block Diagram on Mey Project baprop Terget
File Edt Veew Project Opeiste Took Wadew Help .
S DM Y I ol | tptdpplictionFont « | o Soe D g . i ¥

This ¥ i called esch time a TeleOp 0% paciost & recerved. Use it to respond bo
new joyetick ar Drmees Station walses

(Comman tasis mclude reading joysticls, updating maobors, and wpdating
wetpointy For paricdic loops. Thivecimpls s the nes MEP Y angle ta
conirol Fiedd-Cantric Drive, and resets the yaw sngle upam driver input.

You can ogen V'O o the FIRST Call, of in the Begin.si. -E | Rt the Faw angle whan a buticn il presied by Bha :|II|.II.I
-85

Falatch Info
| —

Ase the ruwist BINP ‘o angle bo rotabs the joysteck inputs.|

Fawd Jergilick X and W

ERIl———F [Teie0p Hpued Second:| and upsiaie moter vekues
This can help detarrrene what hes . § _ -)
bewn run and for how lang Iruurl.\:-_:.l: @-ﬂ] I IFrhrr..r-.'r Mgt
| i ...3_-_;—‘_-?
N
Call Conbed I'":')':t ol It anum - Cifliign ™
|) Fiuisdish the Rabaot Drive r11:-|r:||
[T -y 1 P -
s ko Efferantiste bebwesn e e -in #lues b the deshbosed
Firit, Lawt, and Inbermadiats calli]
ick 0 foen | B
-

Jer

rpnhick O

Rerrtick O Butbern —— -'-"-'
L]
Dol

Each timee we enter, report that
i ate narring leliop

Publish the joyshick dats the

] H rolbhod e to the dashboard
EfER
[These eve ecam ples of resding deshboeed controk from the Base tab

Sample Boolean 0

[Button of = |
E_, E|

Sample Bookean 1
L=

[/ Buttan 1 |
— Sample Hider 0

L

v Propect hproy Targes «

Full LabVIEW Source code on Github

Rotateto Angle (FRC)

Automatically rotating a robot to an angle using a navX-sensor can be used to rotate a robot quickly and
accurately to aknown angle, as long as the robot drive system provides independent Z-axis rotation (the
capability to “spin on adime”). This same technique can be used to help arobot drive in astraight line.

This example code below will automatically rotate the robot to one of four angles (0, 90, 180 and 270
degrees) whenever the corresponding “rotate to preset angle” button is pressed. This rotation can occur
not only when the robot is still, but also when the robot is driving. When using field-oriented control,
thiswill cause the robot to drivein astraight line, in whatever direction is selected.

This example also includes afeature allowing the driver to “reset” the “yaw” angle. When the reset
occurs, the new gyro angle will be O degrees. This can be useful in cases when the gyro drifts, which
doesn’t typically happen during a FRC match, but can occur during long practice sessions.

The PID Controller coefficients defined in the example code will need to be tuned for your drive system.

NOTE: The examples below are for Mecanum drive systems. If you are using atank (differential) drive

41

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_TeleopFieldCentricDrive-1.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples

Examples
Rotate to Angle (FRC)

system, this Java example is available.

For more details on this approach, please visit Chief Delphi, including this helpful post.

FRC C++ Example

Full C++ source code on GitHub

FRC Java Example

Full Java Source code on GitHub

FRC LabView Example

The navX-sensor Rotate to Angle LabView example shows how to make small modifications to the
LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to rotate the robot
to agiven angle.

RobotMain.vi
Place the NavX main vi on the block diagram and set it up to your needs. The default samplerateis

50Hz. Y ou may need to process faster for your situation. For the SPI, 12C and USB connections the max
samplerate is 200Hz.

42

https://github.com/kauailabs/navxmxp/tree/master/roborio/java/navXMXP_Java_RotateToAngle_Tank/src/org/usfirst/frc/team2465/robot
https://www.chiefdelphi.com/forums/archive/index.php/t-95382.html
https://github.com/kauailabs/navxmxp/blob/master/roborio/c%2B%2B/navXMXP_CPP_RotateToAngle/
https://github.com/kauailabs/navxmxp/blob/master/roborio/java/navXMXP_Java_RotateToAngle/

Examples
Rotate to Angle (FRC)

E? Robot Main.vi Block Diagram on 2017 Robaot Project2. bvproj/ Target * - O 4
Fig Edit View Progect Operate Tools ‘Window Help
v| Sesrch 4 b @
-

o s n g 85 vog .o |15pt Apphcation Font = | foe o b B

Documentation Scheduling leop
Robiot Main implements the framewsdk &
and peheduler (o your rebatsos program.
Enable Vision [TER { HEnable Vision
It shauld not be nacessang to modify this .
VL Wiou shoukd be able to code your robot Image Size [T— » @imege sze
hwithin the Team Vs described below.
"'|I.'H.nb-ut Mode=
“Taleop Enabled” =k

1. Beginuwi
Called ance st begnning, to open 110,

inatialize sensars and any globals, load
E

Jeettings from a file, etc. Finish

2. Autonomous Independent.yi
Autornatically started with the first
packet of autonomous and aborted on the

IL:I:t pachkoet. Write this Tearn V] to locp for

e enfirety of the sutonomous pericd.

Execute Teleop VI to neact
a neeswt Diriveer Station packet

3, TebeDp v
Called wach tirme a tebeop D5 packet is
receroed and robot is enabled.

|4, Dicsbledvi Iﬂastd on the rnl.mt mode, call the appropriate TE:HTl code
Called esch time a packet is recerved and m Double click an icon to open a Team W and micdify code
Jthe robot iz disabled.
& initialize robot
R E | Thartup 3 Smartdash Tabies server| | \
Called Automaticay starbed with the first e arup 2 = Id.ae. breard fMetwaork Tables Sereer,
packet and aborted on the last, 8 [Runs in p with uier code. Add the nav Mains to your
Wlodify this ¥l to carny out robot and RobetMairw and jelect &
sensor validation tests. . Start Robot Comemunication. cormmgnication infer ace.
E Funs in parallel with user code. v Mainvi must not be placed in
B, Vision.vi ¢ Scheduling leop above.
A parallel loop that scquires and Aciuine carmen images and -
PrOCESSEs CATIENS IMages. j process them in parallel with =
[m——
ather loops. e
7. PeiodicTasks.vi |
Fasallel lcops runnang at user-defined “. Carry cut periodic tasks w:h|
eacac > 1 a5 control loops. h r

2017 Robot Presect? vesoy Tanaet © »

Teleop.vi

The Teleop.vi is modified to feed the current navX-sensor “Yaw” angle reading to the Holonomic Drive
V1, which rotates the joystick X/Y coordinates by the gyro angle (and thus implements FieldCentric drive
control). Additionally, if adriver joystick button is pressed, the navX-sensor “Yaw” angleisreset to zero.
This example also includes a“Rotate to angle” feature, using aPID controller; note that if “Rotate to
Angleisused while in motion, it causes the robot to drive in a straight line, correcting for lateral drift.

43

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Rotate to Angle (FRC)

B} teleopRotsteTodngle Block Duagram on N Peopct hproy Tanget - m| oo
File Edit View Preject Opaiate Tooh Windew Hslp .
@@ SN OY OB wa o | ptapplicetion Font o doe e gl L ¥

Thas V1 i called aach B @ TeleOp 05 packet is secenes. Uie it 12 reipend 1o
ez pospstick or Diver Stption vakees

Comimeon tasis inchude resding joysticks, updating moton, and updating
et points for periodic loops. This sxample uses the nadl MEP Yaw angle o - .
<ontred Field-Centric Deree, a5 well a5 provide 3 “rotste to angle” festure. # [Fesiet e Yaw ingle mhim a butten is gress i by the dever.)

rofute-fo-angle” n used whils in motion, it causes the rebet b drive in s piraight o [l !
line, comecting for any byteral drift, E

U = [
¥ioas can ogeen W on the FIRST Call, or i the Bagins,
'Eh o Read Joystick X and ¥
st f# [Teletp Hogued Secondi] ared update moter values|
This can help debermine what has
bwan sun and o how long

Lie thve vl TR W angle fo rotabe
the joystack ingeats.

- Prublish the Fickek Diive Mctor]
Etl_ 1 [1]o]e] i walues to the deshbosd

Call Conbest G0z RobetDeive Maters[—

Lise 1o differentiate bebween
Firit, Last, and Inbermediste calk

Mcarea - Laesan =

= 0
mf O
L=
[Euch tirre wer anter report L1i|l m
e are rurwang tebeog

Jorgwtick fBasttons — --—-—-—-Eﬂ

=t

afff]
Pubinh the joystick data the E'I?T i

kot sees bo the dashboand 3

[These sre meam ples of resding deshhoerd comtrels from the Barc tab)

DEButton 0 =1 ETE]|Sample Eoslaan O
ETT] [Sample Bookaan 1
il 5'5'"F|| Clidar
w
Mavd Project bepmy Target < 5

Full LabVIEW Source code on Github

Automatic Balancing (FRC)

The Automatic Balancing example demonstrates how to implement a self-balancing robot, which can be
useful to help avoid arobot tipping over when driving. As an example, FRC team 263 demonstrated the
auto-balance feature effectively during the 2018 FRC Championships.

The basic principle used in the example is based upon measurement of the navX-sensor Pitch (rotation
about the X axis) and Roll (rotation about the Y axis) angles. When these angles exceed the “ of f
balance” threshold and until these angles fall below the “on balance” threshold, the drive system is
automatically driven in the opposite direction at a magnitude proportional to the Pitch or Roll angle.

Note that thisisjust a starting point for automatic balancing, and will likely require a reasonable amount
of tuning in order to work well with your robot. The selection of the magnitude of correction to apply to
the drive motorsin response to pitch/roll angle changes could be replaced by a PID controller in order to
provide a tuning mechanism appropriate to the robot.

44

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_TeleopRotateToAngle-2.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples
https://youtu.be/aXhrxmCJZlE
https://youtu.be/aXhrxmCJZlE

Examples
Automatic Balancing (FRC)

FRC C++ Example

Full C++ source code on GitHub

FRC Java Example

Full Java Source code on GitHub

FRC LabView Example

The navX-sensor AutoBalance LabView example shows how to make small modifications to the
LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to implement high-
accuracy Automatic Balancing.

RobotM ain.vi

Place the NavX main vi on the block diagram and set it up to your needs. The default samplerateis
50Hz. Y ou may need to process faster for your situation. For the SPI, 12C and USB connections the max
samplerate is 200Hz.

45

https://github.com/kauailabs/navxmxp/blob/master/roborio/c%2B%2B/navXMXP_CPP_AutoBalance/
https://github.com/kauailabs/navxmxp/blob/master/roborio/java/navXMXP_Java_AutoBalance/

Examples
Automatic Balancing (FRC)

E? Robot Main.vi Block Diagram on 2017 Robaot Project2. bvproj/ Target * - O 4
Fig Edit View Progect Operate Tools ‘Window Help
= n g 5 wug o |15pt Apphcaticn Font v | I v The E& | — i P 1
~
Diocumentation Scheduling leop

Robiot Main implements the framewsdk &
ane pehedulir (of your rebatses program.

Enable Vision [TER { HEnable Vision
It shauld not be nacessang to modify this .
VL Wiou shoukd be able to code your robot Image Size [T— » @imege sze

hwithin the Team Vs described below.
"'|I.'H.nb-ut Mode=
B4 Talecp Enabhed” =k

1. Beginuwi
Called ance st begnning, to open 110,

inatialize sensars and any globals, load

Jeettings from a file, etc. E Finish

2. Autonamaous Independent.vi
Autornatically started with the first

I:::ht of automomeaous and aberted on the
[

Execute Teleop VI to neact
a neeswt Diriveer Station packet

ast pachket. Write this Team V] to locp for
e enfirety of the sutonomous pericd.

3, TebeDp v
Called wach tirme a tebeop D5 packet is
receroed and robot is enabled.

M8ased on the robot mode, call the approprate Team code

4, Dizshled i I
Ea:l:d ':.:::tim! a pachet is recerved and m Double cick an icon to open a Tesm V1 and modify code
fthe robct is dissbled. T '
& initialize robot
P E I Siariup Smantdashboaed Tietwork Tables Sever] | A
Called Automatically starbed with the first - Ru““F.'l llel with user cade ;
packet and sborted on the last, et - : Add the nav Mains to your
Wlodify this ¥l to carny out robot and RobetMairw and jelect &
sensor validation tests. — Start Robot Comemunication. cormmgnication infer ace.
tori | |Runs in parallel with user code. v Mainvi must not be placed in
B, Vision.vi ¢ Scheduling leop above.

A parallel loop that scquires and j Acquine carmena images and

PrOCESSEs CATIENS IMages. process them in parallel with

ather loops.

7, PericdicTasks.vi k|
Fasallel lcops runnang at user-defined “‘ Carry out paricdic tasks such
catar s 1 a5 cortrol loops. h r

2017 Robot Presect? vesoy Tanaet © »

Teleop.vi

The Teleop.vi is modified to feed the current navX-sensor “Yaw” angle reading to the Holonomic Drive
V1, which rotates the joystick X/Y coordinates by the gyro angle (and thus implements FieldCentric drive
control). Additionally, if adriver joystick button is pressed, the navX-sensor “Yaw” angleisreset to zero.
Finally, the navX-sensor “Pitch” (X-axis) and “Roll” (Y-axis) angles are continuously compared to a
“out of balance” threshold, at which point the corresponding axis motor output value is derived from the
inverse of the sin of that angle, until the time when that same angle falls below the “in balance” threshold.

46

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Automatic Balancing (FRC)

B} Telrptipofalarsesi Blos [iagiem on Bs 3 Geapet hpeog Targed
Fle Edir Viea Progedt Operme Took Weidis Help

F BN § T e o [eepkenfon | lee T g

This W1 & coibed eath L 2 TeleDp [padeet i seceived, Use it o sespond 1o
et pryPRCH £ Drivets SLRRGN siuss

I\ prvwres. ashs wnilwike madag prAicis apdstmg maieis. sed epdsing
et |0 poriaiee ks T example uses the ardl P Yom paghe
ool Fthil-Cantie: Dvive. i will 3 pronsde § "wotane 1o Beghe” femaie, W
-t paghe” b uied shle i mptien, i Causs 1he rolet Do dive i a AsEght
lfee. CavECTIg Tiw may Lol s

Vi e s) o The FIRST Call, o i The Bgiusd

i e Vs snghe whan s button n pressed by S dimer.

e rasdl MEF Few angl bo soiste the oywlick mpui |

“H'i____ 7[R kryibch X andl ¥
ared ppebde ety vaben

S 8 Pl deteirane whal hi
it rr e Pt ugem g

Lkew i i WP Fiech [-as] snd Rl [7-aui] sl
(3 sulvamustically bulsrios the robet wheressr pither of

(e arglied duciedk 81 "ol of kel tirihadd sad
A raaches i i balenes” thschold|

7 ubd i itk Aote Deved Woion

[Fos Weter}— E
- g-¢

mE‘E

Porabacie (1 Euttom ————

Jot) RO Dottty
ey | a2, gl indgrmeediste cabh

ar® b e arder spadt thal
e rusrenp brkeog

Tarnpde Boalean 0
Laid|

Tarepde Boalkean |

kb the jmpriich dats the

o o A the dathboasd

Agtobudmice, s maie oagl | 8§
i -5 o paghe fin cabaes)

e B B

24 My warl to '\m-dul m cooe that Saram

micice oatput vaban uprg tha imemr of the

n &l the “out of belence”™ angle. Eaplecng th
fj’l.h'!'ﬂ'{ll’ﬁl alicss fzr burerg for youe

Full LabVIEW Source code on Github

Coallision Detection (FRC)

Collision Detection is commonly used in automobiles to trigger airbag deployment, which can reduce the
force of an impact and save lives during an accident. A similar technigue can be used on arobot to detect
when it has collided with another object.

The principle used within the Collision Detection example is the calculation of Jerk (which is defined as
the change in acceleration). As shown in the graph below (taken from navX-sensor data recorded in
LabVIEW of asmall collision), whenever the jerk (in units of G) exceeds athreshold, a collision has

occurred.

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_TeleopAutoBalance-1.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples
https://en.wikipedia.org/wiki/Jerk_(physics)

Examples
Collision Detection (FRC)

Collision Detection

using navx MXP Linear Acceleration

06 m B o
0.4

02

——Accalerabion (Y Axis)
50 ED — Jerk: [Auis)
[

=
ao
—
[=]

0.2

04

4.6
0ga = B
In the sample code shown below, both the X axisand the Y axisjerk are calculated, and if either exceeds
athreshold, then a collision has occurred.
The “collision threshold” used in these samples will likely need to be tuned for your robot, since the

amount of jerk which constitutes a collision will be dependent upon the robot mass and expected
maximum velocity of either the robot, or any object which may strike the robot.

FRC C++ Example

Full C++ Source Code

FRC Java Example

Full Java Source Code

FRC LabView Example
The navX-sensor AutoBalance LabView example shows how to make small modifications to the

LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to implement
collision detection.

RobotM ain.vi

Place the NavX main vi on the block diagram and set it up to your needs. The default samplerateis

48

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/08/collision_detection_time_intensity.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/c%2B%2B/navXMXP_CPP_CollisionDetection
https://github.com/kauailabs/navxmxp/tree/master/roborio/java/navXMXP_Java_DataMonitor

Examples

Collision Detection (FRC)

50Hz. Y ou may need to process faster for your situation. For the SPI, 12C and USB connections the max

samplerate is 200Hz.

B} Robot Msin.vi Block Disgram on 2017 Robaot Project?. lvpraj/ Target *
Window Halp
o i@ LM G IS wa @ | 15ptApphcation Font - | o o D B

Fig Edit View Progect Operate Tools

Documentation

Rabot Main implements the framewerk
aned scheduler for your robotscs pregram,

It shauld net be necessany te medify this
You should be able to code your robot
within the Team Vis described below.

1. Beginav

Called ance st begmming, to open 11O,
inatialize sensars and any glabals, load
Jeettinigs from a file, ete,

2. Automomous Independent.vi
Autornatically started with the first

I:I:t pachost. Wit this Teamn W] to loop for
e entirety of the autonomous period.

3. TebeOpai
Called each time a tebeop D5 packet is

recarotd and rebet is enabled.
4, Disabledvi
Jthe robet is disabled.
5, st
packet and sborted on the last,

Maodify this VI te carny out rebot and
serisor validation tests.
. Vision.vi

A parallel loop that scquires and
PrOCESSEs CATIErS images.

7. PesicdicTasks.ui
Pasallel leops running at user-defined

pachet of autonomous and aborted on the

Called each time a packet is recerved amd

Called Automatically starbed with the first

2017 Robot Prosect?. vonoiTamoet ©

Teleop.vi

Scheduling leop

-] =
#| Search =N] E
A

Fimish

Enable Vision [TER

1 vl Enable Vision

imege Size [TE—{+ @ mege s |

vl Robot Mode

Create |0 refriumes
G initialize robot

m

“Telecp Enabbed®

Elﬂil Teleop VI to react

a g Diriwer Station packet

ased on the robot miode, call the appropriate Tesmn code
pubile dick an icon to open a Tesm V1 and modify code

El

-
Starup a St dashboard (Metwaork Tables Server,
el weith wser code,

Blians in p

R}

=
-

_E

Start Robot Communication.
Funz in parallel with user code.

Add the navi Mainoa ko pour

Robothain snd select 2

cermmunication inferface,

e Mainvi must not be placed in
& Scheduling leop above.

A-l'.ﬂuil'! CAFTeia IPNAgEs and
process them in parallel with

other loops.

Cairy cut paricdic tasks such
a5 control loops.

The Teleop.vi is modified to feed the Linear Acceleration to athreshold detector to determineif a

collision has occurred.

49

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Collision Detection (FRC)

B TelucpColsicaDatection s Block Disginm on Mind Projuct hprepTasget - o
Fie m Vitw Frojec Openabe Teok Windew Help .
o i Il g W, wWafg .t | 15ptApphcation Fort = | tor dev fhe g ¥| Se L P

|-:lmrl celinion ¥ “jark” (Hha changs in fwo ucossive tample) in Linear Scoslarsbon

receed “Colisan Thoesheld™ (in Os)

Coliscn lltul-ﬂl—
Cperemien taks inghudie resding pryshicks, updstisy motors, snd updating = F'I--_._,
sehpaints for penedic keops. This ssamphe iges the navid MEP 07 -ges Linsar el
Accebsation valoes, snd i & “jerk” thil eceeds the "cellsion threihald™ (in Gg) 0.5 — EJ
in detected, o Collmion Detection mgnel i werd bo the Smart Daghboard

fou can ogen WD an the FIRST Call, of in the Beginusi.] .l =]
[= T >
= £

Blalch lnfo
| i — _..l

This V1 is cabed esch tove 8 TeleDp D5 packet is recesved, Use & to repond bo
mew jorpstick or Driver Stabion values

|=-:::-

Thii cam halp determing what hag
bewn run and For how leng

[
Fraw Mobors =
[T
L all Combast — 3 Mecanum - Cadtmian =
- 58
pavei] | |- &
Lhe to differerfisie bebween \ =
Bead Joyshick ¥ and ¥ gt 0
{1y
Each time wee enter, report that oeyrstacii (bl Do
We a0E FUnEing telenp
L] Iﬁfﬂ okt sees 10 the dashbosrd

These are esampbes of reasing dashboard contrals Bom the Exsc s
Sarnghe Bockean

Sample Bockean 1

B =

Sarmiple Jider O

By]
i

e Prejuct beprey Target € »

Full LabVIEW Source code on Github

Motion Detection (FRC)

Detecting motion/no-motion can be ssmply detected by determining if abody’s linear acceleration
exceeds asmall threshold.

Using the data directly from accelerometers, thisis not as easy as it seems, since raw accel erometer
readings contain both acceleration due to gravity as well as acceleration due to a body’ s motion. One
method for detecting motion with raw acceleration datais to use a high-passfilter, which lets quickly-
changing information through but blocks information that doesn’t change frequently.

However, amore comprehensive and reliable approach isto subtract the acceleration due to gravity from
the raw acceleration values. The result value is known as “world linear acceleration”, representing the
actual amount of acceleration due to motion, and is calculated automatically by the navX-sensor’s motion
processor. Whenever the sum of the world linear acceleration in both the X and Y axes exceeds a* motion
threshold”, motion is occurring.

FRC C++ Example

50

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/08/LabviewNavX-AE_TeleopCollisionDetection.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples
https://en.wikipedia.org/wiki/High-pass_filter

Examples
Motion Detection (FRC)

Full C++ Source Code

FRC Java Example

Full Java Source Code

FRC LabView Example

The navX-sensor AutoBalance LabView example shows how to make small modifications to the
LabView “FRC RoboRIO Robot Project” using the “Mecanum Robot” configuration to detect when your
robot is moving.

RobotMain.vi

Place the NavX main vi on the block diagram and set it up to your needs. The default samplerateis
50Hz. Y ou may need to process faster for your situation. For the SPI, 12C and USB connections the max
samplerate is 200Hz.

E? Robot Main.vi Block Diagram on 2017 Robaot Project2. vproj/ Target * - [m] 4
Fig Edit View Progect Operate Tools ‘Window Help
D@ DN G 15 o o [15pthpphcationfont « | Ioe e 0D~ Y wl =
~
Daocumentation Scheduling leop

Robiot Main implements the framewordk &
ared scheduler far pour robotscs program,

Enable Vision [TER { HEnable Vision
It shauld not be nacessang to modify this .
VL Wiou shoukd be able to code your robot Image Size [T— » @imege sze

hwithin the Team Vs described below.
"'|I'.F.n:|b-ut Mode
B Taleop Enabbed” -k

1. Baginu

Called ance st begnning, to open 110,
inatialize sensors and ary glabals, load

Jeettings from a file, etc. E

Firish

2. Autonomous Independent.vi
Automatically started with the first

I:::ht of automomouws and aborted on the
I

Execute Teleop VI to neact
a neeswt Diriveer Station packet

ast pachket. Write this Team V] to locp for
e enfirety of the sutonomous pericd.

3, TebeDp v
Called each time a tebeop 05 packet is
receroed and reboet is enabled.

- - M8ased on the robot mode, call the approprate Team code
4. Disabled. |
o Double cick an icon to open a Tesm V1 and modify code

Called each time a packest is recereed and
Kthe robct s disabled. Create |0 refrums [.
B inafialize robot

5, Testa
; " Srarup & Senat dashbosrd (Metwark Tables Server,
Called Autematically starbed with the fiest E -mI Ruﬂifl parallel vith sér code, -
packet and sborted on the last, et Add the nav Mains to your
Wlodify this ¥l to carny out robot and RobetMairw and jelect &
sensor validation tests. E Start Robot Comemunication. u:-}mm-..n'!-catmn inferface.)
torri | |Runs in parallel with user code: v Mainvi must not be placed in
6. Vision.vi ¢ Scheduling leop above,

& parallel loop that acquires and j A Cquine carvin images and E
F

PIOCESSES CAMIEra IMages. process tham in parallel with

ather loops.

7, PericdicTasks.vi k|
Fasallel lcops runnang at user-defined “‘ Carry out paricdic tasks such
catar s 1 a5 cortrol loops. h r

2017 Robot Prosect? veroi Taraet < *

51

https://github.com/kauailabs/navxmxp/tree/master/roborio/c%2B%2B/navXMXP_CPP_MotionDetection
https://github.com/kauailabs/navxmxp/tree/master/roborio/java/navXMXP_Java_MotionDetection
https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Motion Detection (FRC)

Teleop.vi

The Teleop.vi is modified to detect when the robot has motion.

B TeleophdotionDetection.yi Block Diagram on Mavi Propect beproj/Target - a x
File Edit View Project Operste Took Window Help
S8 @0 G B wag | ptapplicstion Font « | Jor or 0D Agd F— L P
L]

This ¥l is called sach time a TeleOp D5 packet s received. Use it to respond to
new joystick or Driver Statson values.

Common tasks include reading joysticks, updating motors, and updating
wetpoints for periodss loops. This axample uses the nayvd MEP Metion detecton
indicatos, and outputs this value to the Smart Dashboard.

|I‘I' the navi MEP has detected motion thet exceeds it's “Wotson Threshold®, indscate this

'fou can open 0 on the FIRST Call, or in the Begin.vi. by cutputting a valus to the Smart Dashboard.

Match info |_ I Read loystick) and ¥ of# [2nzar Status BAONING] IT" &
End update mobor valuss E ' umas
This can help determine what has
been run and for how long Eiane o botlrive Motors b =
L
[Tt | perry |
------- e =
Call Cortest lopmick m o [Mecanam - Camtessan -]
E TALLLE
- Publish the Robot Drive Moics
Lite to differerdiate between T lusess o the daghboard

Furst, Last, and Intermediate calls

ferwtich DV b i s

Publish the joystick data the|

Each tirne we enter, report that
okt s bo thi dashBboand

we are nunning teleop
= = = =
M hese sre xsmiples of reading dashbosrd controls from the Basic tab

Sample Boclean O
Sarnple Bockean 1
Lia]

Sample Slider O

HavX Project.proj/Target <€

Full LabVIEW Source code on Github

Data Monitor (FRC)

The Data Monitor example code demonstrates how to perform navX-MXP initialization and display all
sensor values on a FIRST FRC robotics dashboard. The output data values include:

¢ Yaw, Pitch and Roll angles

Compass Heading and 9-Axis Fused Heading (requires Magnetometer calibration)
Linear Acceleration Data

Motion Indicators

Estimated Velocity and Displacement

52

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_TeleopMotionDetection.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples

Examples
Data Monitor (FRC)

e Quaternion Data
e Raw Gyro, Accelerometer and Magnetometer Data

Aswell, Board Information is also retrieved; this can be useful for debugging connectivity issues after
initial installation of the navX-sensor.

FRC C++ Example

Full C++ source code on GitHub

FRC Java Example

Full Java Source code on GitHub

FRC LabVIEW Example

The navX-sensor Test Window.vi example shows al of the outputs from the navX-sensor through “FRC
RoboRIO Robot Project”.

RobotM ain.vi

Place the NavX main vi on the block diagram and set it up to your needs. The default samplerateis
50Hz. Y ou may need to process faster for your situation. For the SPI, 12C and USB connections the max
samplerate is 200Hz.

53

https://github.com/kauailabs/navxmxp/blob/master/roborio/c%2B%2B/navXMXP_CPP_DataMonitor/
https://github.com/kauailabs/navxmxp/blob/master/roborio/java/navXMXP_Java_DataMonitor/

Examples
Data Monitor (FRC)

E? Robot Main.vi Block Diagram on 2017 Robaot Project2. bvproj/ Target *

o @ G IS womt v | 150 Applcation Font w | o o @b BY

- O 4
File Edit View Progect Operate Tools Window Help
¢ Sesrch 4 ®
A

Documentation Scheduling leop
Robiot Main implements the framewsdk &
ared scheduler Taf your rebotes pregiem,
Enable Vision [TER -- - | » @Enabie Vision
It shauld not be nacessang to modify this
Vou should be able to code youwr robot |r|-|age-5|'u

hwithin the Team Vs described below.

1. Beginuwi
Called ance st begnning, to open 110, ™0 Taleop Enabhed -
inatialize sensors and ary glabals, load]
Jeettings from a file, etc.

Firish I

2. Autonomous Independent.yi
Automatically started with the first

I:lclﬂ of automomeaous and aberted on the
[

- |
ast pachket. Write this Team V] to locp for I 1

Exacute Teleop W1 to react
a neeswt Diriveer Station packet

e enfirety of the sutonomous pericd.

3, TebeDp v
Called wach tirme a tebeop D5 packet is
received and robiot is enabled.
|4, Dicsbledvi ased on the robot mode, call the appropriate Team code
ICH"EleId'It'H'HE a pachet is recerved and m puble click an icon to open a Tesm V1 and micdify code
Jthe robct is disabled. e e L
& initialize robot
5, Tt I ™
Called Automatically starbed with the first E I Starup & Senant dashbosrd (Metwark Tables Server,
It
packet and sborted on the last, 8 [Runs in p with wser code, Add the nav Mains to your
adify this ¥l to carny out rebot and RabotMain and select &
serisor validation tests. Srart Robot Communication. cormmunication interface.
E Funs in parallel with user code. v Mainvi must not be placed in
B, Vision.vi ¢ Scheduling leop above.
A parallel loop that scquires and Acquine carven images and me
PrOCESSEs CATIENS IMages. process them in parallel with =
! vy
T, PeriodicTasks.vi |
Fasallel lcops runnang at user-defined Carry cut peniodic tasks such
eacac > 1 a5 control loops. h r
B
2017 Robot Presect? venoi Taraet < »

Test Window.vi

Place the Test Window.vi inside of aloop in any VI (for instance in your Teleop.vi loop) and the values
will automatically update. Test Window.vi isin the navX-AE “Get” folder.

54

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/LabviewNavX-AE_RobotMain.png

Examples
Data Monitor (FRC)

B3 npet Teher s Front Panel on MEvE Fropctbpng Tag - [m] x

Flke Edit View Pesject Opoale Took Wisdow Help E@
w8 0 N | ViptApglication Fomt = | B Sov HE= g + Saar 1, ¥

MXP 1/0O Expansion (FRC)

The “MXP 1/O Expansion” example program demonstrates the use of the MXP 1/0O Expansion
capabilities of the navX2-MXP / navX-MXP, including the following capabilities:

DIGITAL I/O

e Pulse-Width Modulation [PWM] (e.g., Motor Control)
¢ Digital Inputs (e.g., Contact Switch closure)

e Digital Outputs (e.g., Relay control)

¢ Quadrature Encoders (e.g., Wheel Encoder)

ANALOG1/O

e Analog Inputs (e.g., Ultrasonic Sensor)

e Analog Input Trigger (e.g., Proximity Sensor trigger)
e Analog Trigger Counter

e Analog Output (e.g., Constant-current LED, Sound)

This example also demonstrates a simple method for calculating the * RoboRIO Channel Number’ which
corresponds to agiven navX2-MXP /navX-MXP 10 Pin number.

55

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/08/LabviewNavX-AE_TestWindow.png
https://pdocs.kauailabs.com/navx-mxp/installation/io-expansion/

Examples
MXP 1/0O Expansion (FRC)

FRC C++ Example

Full C++ source code on GitHub
FRC Java Example

Full Java Source code on GitHub

FRC LabView Example

The navX MXP 10 LabView example shows how to make small modifications to the LabView “FRC
RoboRIO Robot Project” using the “Mecanum Robot” configuration to access MXP Expansion 10

Capabilities.
RobotM ain.vi

Documentation

|Robot Main implements the frameworic =
and scheduler for your rabatics pragram.,

it should not be necessary to modify this
WL You should be able to code your robet
within the Team Vs described bebow,

1. Begin.vi and InitExpansioni0

Called ance at beginning, to apen 10,
initialize sensors and any globals, load
xtting; from a file, etc.

2. Buronamous Independent.vi
Autornatically started with the first

packet of autonomaous and aborted on the

last packet. Write thes Team V1to loap for
he entirety of the autonomous pencd.

Scheduling loop

@ Robot Mode
M| Teleop Enabled”

Finish

L

Execute Tebeop VI to react

Pazs Expansion to & new Driver Station packet

0 Objects to Vs

Jthe robat is disabled.

5. Testwi

Called Automatically started with the first
est packet and aborted on the last.
Muodify this ¥1 to carny out robot and
sersad validation tests,

7. PeriodicTasks.vi
Parallel loops running at user-defined

LI!E.
. Finish.w

Called befare exting, 50 you can save
data, clean up IO, etc.

3. TeleOpai hat need them
Called esch time & teleop D5 packet is Create 10
Jreceived and robot is enabled, refriums 3
& initaslize
4. Dizabled v robot Based on the robot mode, call the appropriate Team code
Called each tirme & packet is received and m Double click ani icon to open a Teamn W] and meodify code

HE

Startup & Smartdashboard /MNetwork Tables Seneer.
Runs in parallel with user code.

Start Robot Communication,
Runs in parallel with user code.

| ETART
LA

_@ |Cam,' out periodic tasks such
a5 control loops.

The RobotMain.vi invokes the InitExpansionl O.vi during initialization, and routes the resulting
DigitalloObjects and Analogl oObjects clusters to the Teleop.vi.

InitExpansionl O.vi

56

https://github.com/kauailabs/navxmxp/blob/master/roborio/c%2B%2B/navXMXP_CPP_ExpansionIO/
https://github.com/kauailabs/navxmxp/blob/master/roborio/java/navXMXP_ExpansionIO/
https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/labview_expansion_io_robotmain.png

Examples
MXP 1/0O Expansion (FRC)

The InitExpansionl O.vi instantiates the various objects which map onto the navX-MXP Expansion IO

DigitalleObjects

Pins.
E -+ kor
4opa || Victor ¥
Vet]
E MWlatar
o
Fegh R [J2guar ~]
FIN
E E
CHAH OFEH
« Digitalld = FroM
1]
D CHAH OFEH
« Digitalld = FroM E
00 Cut
E OFEH
CHAH
o gtelb ki OI dut
E OFEH
.- CHAH
« DigitallD FROM
E]
.- CHAH
« DigitallD FROM
]
.- CHAH
« DigitallD FROM
[]
.- CHAH
« DigitallD FROM
[}
.- CHAH
« DigitallD FROM
[]
CHAN
+ Analogln = R

AnalogloOhbjects

AnTrig l:'g"‘ll:lig Ere
OPEM OFEN

.....

|Up_a'D|:uwn Made T"

CH&H OFEH

GetChanndFromNavX-M XPPin.vi

F-nn_n

The GetChannel FromNavX-M XPPin.vi performs the trandation from the navX2-MXP / navX-MXP
Digital or Analog Pin number to the corresponding RoboRIO Channel Number, which is provided to the
various Vlsthat open that particular port.

57

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/labview_expansion_io_init.png

Examples
MXP 1/0O Expansion (FRC)

navi-MXEP Pin Number

RoboRIC Channel Number

navE-MEP Pin Type

=3

Teleop.vi

The Teleop.vi reads the Joystick inputs and programs the output pins accordingly (PWM to motor
controllers, Digital Outputs and Analog Outputs). As well, values from the input pins (Digital Inputs,
Encoders and Analog Inputs) isretrieved and displayed on the Smart Dashboard.

[Objects connected to nave MXP Digital 'O Pins|

I This example demonstrates the use of the MXP 1'0 Expansion capabilities of the - I ";:'
navX MXP, including the following capabilities: Datput
Pt
Pulse-Width Modulation [PWM)] (e.g., Motor Control) ,:,f,:._‘
Digital Inputs (e.g., Contact Switch clesure)
Digital Dutputs (e.g.. Relay control) e

Quadrature Encoders (e.g.. Wheel Encoder)

Analog Inputs (&.g., UWtrasonic Sensor)

Analog Input Trigger (e.g.. Proximity Sensor trigger)
Analog Trigger Counter

Analog Output (e.g., Constant-current LED, Sound)

Match Info

e [T i 5]

DigitalloObjects

This can help determine what has

been run and for how long

I [T e, FPTY % a m_‘:I
Call Context = g -
=3 :

AnalogloObjects

L

iz

Use to differentiate between
First, Last, and Intermediate calls Jerystick 0/ Axes

Joystick 0/Buttons L

|

Each time we enter, report that
we are running teleop

IAnalnﬂrﬂCnu nt-erl

Publish the joystick data the MEP 110

ETETE robot sees bo the dashboard oltage
= :

[Objects connected to nave MXP Analeg 1'0 Ping|

Full LabVIEW Project on GitHub

58

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/labview_expansion_io_channel_to_pin.png
https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/labview_expansion_io_teleop.png
https://github.com/kauailabs/navxmxp/tree/master/roborio/labviewae/Examples

Guidance
Best Practices

Guidance
Best Practices

This page summarizes the recommended best practices when integrating a navX-sensor with the National
Instruments RoboRIO™. Following these best practices will help ensure high reliability and consistent
operation.

1) Secure the navX-sensor circuit board to the Robot Chassis

Excessive vibration will reduce the quality of navX-sensor measurements. The navX-sensor circuit board
should be mounted in such away that it as firmly attached to the robot chassis.

2) Plan for RoboRIO Brownouts

The RoboRIO contains circuitry to remove power from the MXP connector when it detects an input
voltage drop below a certain voltage level; thisis known as a Stage 2 brownout. While brownouts do not
typically occur during a FRC match (since fresh batteries are typically used at these times), during
practice matches brownouts are common. If the robot drive train draws large amounts of current, even for
a short time, brownouts could potentially occur even with a FRC match.

navX-sensors maintain state information that will be reset when the navX-sensor circuit board is
restarted. Avoiding navX-sensor restartsis very important if your robot software usesthe “ yaw” angle.

To avoid a navX-sensor restart when stage 2 brownouts occur, a secondary power supply for the navX-
sensor circuit board should be provided. Fortunately, the RoboRIO provides just such a power supply,
since its onboard USB interface is powered by a boost regulator which will provide 5V of power even
when the RoboRIO input voltage (VIN) drops as low as 4.4 volts (once the RoboRIO VIN drops lower
than this, the RoboRIO itself will restart).

To address this situation, simply connect a USB cable from the navX-sensor circuit board to the

RoboRIO; if a brownout does occur, the navX-sensor circuit board will automatically switch to use power
from the RoboRIO’s USB port.

3) Understand and Plan for Calibration

Gyro/Accelerometer Calibration isvital to achieving high-quality navX-sensor readings. Be sure to
understand this process, and ensure that it completes successfully each time you use the robot.

If your robot moves during calibration, or if noticeable temperature changes occur during calibration, the
calibration process may take longer than normal.

Using the navX-sensor yaw angle before calibration completes may result in errorsin robot control. To
avoid this situation, your robot software should verify that calibration has completed (e.g., by calling the

59

https://pdocs.kauailabs.com/navx-mxp/?page_id=148
https://wpilib.screenstepslive.com/s/4485/m/24166/l/289498-roborio-brownout-and-understanding-current-draw
https://pdocs.kauailabs.com/navx-mxp/?page_id=197
https://pdocs.kauailabs.com/navx-mxp/?page_id=188

Guidance
Best Practices

isCalibrating() function) before using navX-sensor data.

4) If using the M XP connector, secure the navX-sensor circuit board
to the RoboRio

During operation of the robot, certain actions (for instance, driving over a bump at high speed) may cause
the navX-sensor circuit board to become dislodged from the M XP connector.

To avoid this case, when mounting the navx-sensor circuit board to the RoboRIO MXP port, be sure to
secure the navX-sensor circuit board firmly to the RoboRio viatwo correctly-sized screws.

5) Protect the Sensor

navX-sensors contain sensitive circuitry. The navX-sensor circuit board should be handled carefully.

An enclosure is recommended to protect the navX-sensor circuit board from excessive handling, “swarf”,
electro-static discharge (ESD) and other elements that could potentially damage navX-sensor circuitry.
The enclosure can also help prevent accidental shorts to ground which may occur on the MXP Expansion
1/O pins.

6) Plan for Catastrophic Sensor Failure

Any electronic component can fail or become disconnected accidentally. To ensure that your robot can
still function during a FRC match even if such a failure does occur, your robot software should handle
cases when communication with sensors such as the navX-sensor is disrupted.

An easy way to accomplish thisis to use the “isConnected()” indication, and only use navX-sensor data
to control your robot when thisistrue.

Additionally, displaying whether the robot software is connected to the navX-sensor circuit board on the
driver “dashboard” can help the drivers quickly detect a connection problem.

7) Providea“Zero Yaw” feature (for Field-Oriented Drive)

The navX-sensor gyro “yaw” angle will drift over time; the amount of drift depends upon the generation
of navX-sensor (“Generation 2" navX2-sensors drift less than “Classic” navX-Sensors) and aso how
firmly the navX-Sensor is mounted to the chassis. While this does not normally impact the robot during a
FRC match, if using field-oriented drive during extended practice sessions it may be necessary to
periodically “zero” the yaw. Drivers should be provided a simple way (e.g., ajoystick button) with which
to zero the yaw.

8) Avoid shorts on Expansion I/O pins

60

https://pdocs.kauailabs.com/navx-mxp/?page_id=148
https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/
https://pdocs.kauailabs.com/navx-mxp/?page_id=242

Guidance
Best Practices

If a short occurs between any of the MXP Expansion I/O pins, the POWER led on the RoboRIO will turn
red, and the navX-sensor circuit board will not receive power.

To protect against accidental shorts, Kauai Labs recommends a protective enclosure that at |east partially
encases the MXP I/O pins, such asthe “lid”-style enclosure created for the navX2-MXP / navX-MXP.

9) If possible, mount the navX-sensor circuit board near the center of
rotation

Since navX-sensor measures rotation, errors in the measured angles can occur if the navX-sensor circuit
board is mounted at a point not near the robot center of rotation. For optimal results, the navX-sensor

circuit board should be mounted at the robot’ s center of rotation. If the navX-sensor circuit board cannot
be mounted near the robot’ s center of rotation, small amounts of error that may be noticeable can occur.

10) Use OmniMount if the navX-sensor isnot mounted
horizontally

By default, the navX-sensor’ s motion processing requires the unit be mounted horizontally, paralld to the
earth’ s surface; the yaw (Z) axis should be perpendicular to the earths surface.

If your RoboRIO is mounted vertically, you will need to enable the “OmniMount” feature in order to get
reliable, accurate yaw (Z) axis readings.

11) Learn how the sensor behaves by using the navXUI

The navXUI providesinsight into the key navX-sensor features, and can help debug issues you may
encounter when integrating navX-sensor onto your robot. Running this user interface is highly
recommended for anyone using a navX-sensor. Y ou can even run the navX Ul while your robot is
simultaneously communicating with the navX-sensor circuit board viathe sensor’s external interfaces
(e.g.,, TTL UART, 12C or SPI).

Terminology

Several terms used throughout the navX-sensor libraries and documentation may not be commonly
understood and are defined herein.

Basic Terminology

A working knowledge of the following Basic Terminology is highly recommended when working with a
navX-sensor or any other Inertial Measurement Unit (IMU).

61

https://pdocs.kauailabs.com/navx-mxp/installation/creating-an-enclosure/
https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/
https://pdocs.kauailabs.com/navx-mxp/installation/omnimount/
https://pdocs.kauailabs.com/navx-mxp/?page_id=222

Guidance
Terminology

Pitch, Roll and Yaw

Pitch Axis

Roll Axis

Yaw Axis

Pitch, Roll and Y aw are measures of angular rotation about an object’s center of mass, and together
provide a measure of “orientation” of that object with respect to an “at rest” position. When units of
degrees are used, their range is from -180 to 180 degrees, where 0 degrees represents the “ at rest”
position of each axis.

AXis Orientation relativeto object’s Rotational Motion
center of mass
X (Pitch) Left/Right + Tilt Backwards
Y (Roall) Forward/Backward + Roll Left
Z (Yaw) Up/Down + Clockwise/ — Counter-
wise

Important Note: Pitch, Roll and Yaw angles represent rotation fromthe “ origin” (0,0,0) of a 3-axis
coordinate system. navX-sensor Pitch and Roll angles are referenced to earth’s gravity — so when a navX-
sensor isflat, Pitch and Roll angles should be very closeto O.

The Yaw angleis different — Yaw is not referenced to anything external. When navX-sensor startup
calibration completes, the Yaw angle is automatically set to 0 — thus at this point, O degrees represents
wherethe “ head” of the navX-sensor circuit board is pointing. The Yaw angle can be reset at any time
after calibration completesif a new reference direction is desired.

Linear Acceleration

Linear Acceleration is ameasure of the change in velocity in a specific direction. For example, when a
car starts from a standstill (zero relative velocity) and travelsin astraight line at increasing speeds, it is
accelerating in the direction of travel.

AXIS Orientation Linear motion
X Left/Right —Left/ + Right

62

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/11/navX_Yaw_Pitch_Roll_Axes.png

Guidance

Terminology
Y Forward/Backward + Forward / — Backward
Z Up/Down + Up/—-Down

Because the gyroscope and accelerometer axes are aligned, a navX-sensor measures linear acceleration in
the same set of 3 axes used to measure Pitch, Roll and Yaw. However unlike Pitch, Roll and Y aw,

accel eration measures linear motion rather than rotation, and is measured in units of G, with arange of +/-
2.0.

Compass Heading

A compass measures the earth’s magnetic field and indicates the current direction (heading) relative to
magnetic north (N). Compass Heading is measured in degrees and is similar to Y aw, but has afew key
differences:

e Compass Heading has arange of 0-360 (where magnetic north is 0).
e Compass Heading is absolute — it is referenced to magnetic north, and thus Compass Heading
does not drift over time

Important Note 1: Compass Heading relies upon being able to measure the earth’s magnetic field. Snce
the earth’ s magnetic field is weak, Compass Heading may not be able to measure earth’s magnetic
field when the compassis near a strong magnetic field such as that generated by a motor.

Important Note 2: Magnetic North is not exactly the same as True North. Your robot can calculate True
North given a Magnetic North reading, aslong as the current declination is known. Declination isa
measure of the difference in angle between Magnetic North and True North, and changes depending upon
your location on earth, and also changes over time at that same location. An online calculator is provided
allowing one to calculate declination for a given earth location and date.

Altitude

Altitude is ameasure of distancein the “up” direction from areference; navX-sensors (Aero Edition

63

https://i0.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/11/Compass.png
https://adventure.howstuffworks.com/outdoor-activities/hiking/compass-or-gps2.htm
https://www.ngdc.noaa.gov/geomag-web/

Guidance
Terminology

only) calculate altitude above sea-level using a pressure sensor.
navX-sensor (Aero Edition only) altitude has arange of 0 to 25,000 meters.
Important Note: Altitude is calculated based upon barometric pressure. In order to accurately estimate

altitude above the earth, navX-sensor should be configured with the sea-level barometric pressurein the
surrounding area. This setting can be configured via the navX-sensor Advanced Configuration Tool.

3-D Coordinate System

navXx-sensor 3-D Coordinate System

A 3-D Coordinate System uses one or more humbers (coordinates), often used to uniquely determine the
position of a point within a space measured by that system. The origin of a 3-D coordinate system has a
value of (0, 0, 0).

nav X -sensors feature gyroscopes, accel erometers and magnetometers which are al aligned with each
other in a 3-D coordinate system. Each sensor type measures values with respect to that coordinate
system, as follows:

Gyroscopes: measure rotation (as shown in the green arrows) about each axis. The coordinate system
origin represents the center of the navX-sensor circuit board.

Accelerometers: measure acceleration, where the origin represents the position in space at which the
previous accel eration sample was acquired.

Magnetometers: measure earth’s magnetic field, where the origin represents the center of the navX-
Sensor circuit board.

64

https://pdocs.kauailabs.com/navx-mxp/software/tools/advanced-configuration/
https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/06/TriAxis.png

Guidance
Terminology

Important Note: Because navX-sensor Gyroscopes, Accelerometers and Magnetometers are all aligned to
this 3-D Coordinate System, a navX-sensor’s motion processor can also use Sensor Fusion to provide
additional information and processing including Tilt Correction, “ Fused Heading” , a Gravity Vector,
World Reference Frame-based Linear Acceleration and Quaternions, as discussed in the Motion
Processing section below.

Motion Processing

Users should also have aworking knowledge of the terms defined in the Motion Processing Terminology.

Tilt Correction

Without correction, the compass heading cal culated by a 3-axis magnetometer will only be accurate if the
magnetometers are held “flat” with respect to the earth. To ensure the compass heading isvalid evenin
cases when the sensor is “pitched” (Pitch angle!'=0) or “rolled” (Roll angle != 0), a navX-sensor
performs “tilt correction” fusing the reading from the magnetometers with the pitch and roll angles from
the accelerometers. Once corrected, the compass heading is aligned with the navX-sensor Z axis, which
ensures that the Y aw angle and the Compass Heading measure rotation similarly.

“Fused” Heading

Given the gravity-referenced orientation provided by the Yaw angle, as well as the absolute compass
heading angle which has been aligned to the navX-sensor 3-D coordinate system, both angles can be
fused together. As shown in the table below, over aperiod of several minutes this can minimize the drift
inherent in the Yaw angle, as well as provide an absolute reference for the Y aw angle — aslong as the
magnetometer is calibrated and a valid magnetometer reading is available every minute or so.

Value Accuracy Update Rate Drift

Yaw .01 degrees Up to 200 Hz See Technical Specifications

Compass 2 degrees 1 Hz (if not magnetically None

Heading disturbed)

Fused 2 degrees (aslong asavalid Up to 200Hz None (however during periods

Heading magnetometer reading is received of magnetic disturbance, the

in the last minute or so) heading is subject to yaw

drift)

Like the Compass Heading, the Fused Heading has a range from 0-360 degrees.
Important Note: If the Compass Heading is not valid, the Fused Heading origin is the same as the Yaw

angle. When valid (magnetically undisturbed) compass readings are received, the Fused Heading's
origin shifts to magnetic north (0 degrees on the Compass).

Gravity Vector

Accelerometers measure both acceleration due to gravity, as well as acceleration due to linear

65

https://pdocs.kauailabs.com/navx-mxp/intro/technical-specifications/

Guidance
Terminology

acceleration. This fact makes using raw accelerometer data difficult. A navX-sensor’s automatic
accelerometer calibration determines the component of measured accel eration which corresponds to
gravity, and uses this information together with gyroscope readings to calculate a gravity vector, which
represents acceleration due to gravity. Pitch and Roll angles are derived from this gravity vector.

Once the gravity vector is understood, this value is then subtracted from the raw accelerometer data to
yield the acceleration due to linear motion.

Velocity and Displacement

Acceleration is defined as the change in Velocity. Therefore, linear velocity can be calculated by
integrating linear acceleration over time.

Velocity is defined as the change in Position, otherwise known as Displacement. Therefore, linear
displacement can be calculated by integrating linear velocity over time.

Important Note: Using currently-available MEMS-based accelerometers to calculate linear velocity and
displacement is subject to large amounts of error primarily due to accelerometer “ noise” (a difference
between the actual acceleration and the measured acceleration inherent with MEMS sensors). This noise
not only accumulates, but is also squared in the case of velocity, and is cubed in the case of
displacement. The significant amounts of error in displacement values mean they are not typically useful
for robotic navigation; the amount of error in displacement estimation can be several feet per second. As
MEMS sensors improve in the coming years and accel erometer noise is reduced, this technique will
become more useful for robotics navigation.

If you would like to experiment with using the navX-sensor to calculate displacement and velocity, you
can use the navXUI’s* Experimental” button to bring up a dialog which displays the integrated vel ocity

and displacement values calculated in real-time by the navX-sensor.

World Reference Frame

Raw acceleration data measures accel eration along the corresponding sensor axis. This measurement
occursin areference frame known as “Body Reference Frame”. Thisworks well aslong as the navX-
sensor circuit board isinit’'sorigina orientation. However as the navX-sensor circuit board rotates (e.g,
astherobot it is mounted to rotates), the X and Y accelerometer axes no longer point “forward/back” and
“left/right” with respect to the original orientation. To understand this more clearly, consider how the
meaning of the term “left” changes once arobot has rotated 180 degrees? Introducing a World Reference
Frame solves thisissue by providing areference upon which to measure “leftness”.

To account for this, a navX-sensor’s motion processing adjusts each linear acceleration value by rotating
it in the opposition direction of the current yaw angle. The result is an acceleration value that represents
accel eration with respect to the areain which the navX-sensor operates, which is known as “World
Reference Frame”. This world-frame linear acceleration value is much ssmpler to use for tracking motion
of an object, like arobot, which might rotate while it moves.

66

https://pdocs.kauailabs.com/navx-mxp/software/navx-mxp-ui/

Guidance
Terminology

Important Note: navX-sensor Linear Acceleration values are in World Reference Frame.

Advanced

Advanced users may require knowledge of the following terminology.

Quaternions

A guaternion is afour-element vector that can be used to encode any rotation in a 3D coordinate system.
This single 4-element vector value can describe not only rotation about a reference frame's origin (Pitch,
Roll and Y aw) but aso the rotation of that entire reference frame with respect to another.

Furthermore, when Pitch, Roll and Y aw measures to perform certain calculations, it is not possible to
clearly ascertain orientation when two axes are aligned with each other; this condition isreferred to as
“Gimbal Lock”. For robotics applications, Pitch, Roll and Y aw are sufficient, however for certain
aerospace applications, Quaternions may be required to handle all possible orientations.

navX-sensors use Quaternions internally, and also provide the 4 quaternion values for use by those who
might need them.

Selecting an Interface

The navX2-MXP /navX-MXP sensors provide several methods for communicating with robotics control
applications:

e MXPI12C
e MXP SPI
e USB 2.0

Streaming vs. Register-based Communication
The navX-MXP interfaces fall into two types. Streaming and Register-based.

Streaming: datais sent at regular intervals by the navX-sensor, and the host is notified when new data
arrives. To support the lower bandwidth of the TTL UART interface, streaming data can be transmitted in
two different formats: Processed Data and Raw data. Streaming is used over the TTL UART and USB
interfaces. More details on the communication detail are available in the Serial Protocol Definition.

Register-based: communication isinitiated by the host whenever new datais desired, and the host can
request any data required. Register-based communication is used over the 12C and SPI interfaces. More
details on the communication detail are available in the Register Protocol Definition.

Comparing the navX-sensor Communication I nterfaces

67

https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/USB#USB_2.0
https://pdocs.kauailabs.com/navx-mxp/advanced/serial-protocol/
https://pdocs.kauailabs.com/navx-mxp/advanced/register-protocol/

Guidance
Selecting an Interface

Interface Speed Latency Type Cabledistance Max Update
Type Rate

SPI 2 mbps <lms Register-based <1 meter 200

12C 400 kbps ~10ms Register-based 1 meter 200

USB 12mbps 1ms Streaming 6 meters 200

Recommendations

Based upon the above, the following recommendations are provided for selecting the best navX-MXP
communications interface:

— If mounting the navX-sensor directly on the RoboRIO, the SPI interfaceis preferred for it’s high speed
and low latency.

— If mounting the navX-sensor separately from the RoboRIO using an extension cable and if MXP IO
support isdesired, run SPI at alower speed. The |2C interface is aso areasonable option.

— If mounting the navX-sensor separately from the RoboRIO, and MXP 10 support is not desired and
only Processed or Raw Data (not both) is needed, USB may be used. This configuration is useful when
using the navX-sensor magnetometer data, since it makes it possible to mount the navX-sensor farther
away from motors. This configuration is also useful when accessing navX-sensor data from a separate
processor, such as a PC or a separate video processor. However, please note that in certain cases when
other USB devices (e..g, cameras) are connected to the same RoboRIO USB bus, and are used
simultaneously with navX-sensor, in certain cases the USB communication isinterrupted. For this
reason, USB is not recommended on the RoboRI O, especially if you are connecting with other USB
devices on the same USB bus.

Gyro/Accelerometer Calibration

Gyro/Accelerometer Calibration

navX-sensors require calibration in order to yield optimal results. Although this calibration occurs
automatically, we highly recommend taking the time to understand this calibration process — successful
calibration is vital to ensure optimal performance.

Accurate Gyroscope Calibration iscrucial in order to yield valid yaw angles. Although this process
occurs automatically, understanding how it worksis required to obtain the best results.

If you are tempted to ignore this information, please read the section entitled “ The Importance of
Sillness’ at the end of this page.

Cdlibration Process

68

Guidance
Gyro/Accelerometer Calibration

The navX-sensor Calibration Process is comprised of three calibration phases:

e Factory Calibration
e Startup Calibration
e On-the-fly Calibration

69

Guidance
Gyro/Accelerometer Calibration

Initialization

Factory
Calibration Data
Present?

Factory Calibration
o

Sensor still
& Factory Cal
Complete?

Although not required, re-running
Factory calibration at in-use
temperature may increase accuracy.
¥es Sensor must be still.

Apply Factory

Calibration Data

)
Startup Calibation 2 Sensor must be still.
k)

Initial Yaw Offset) Once acquired, Initial Yaw Offset
Accumulation is subtracted from all yaw angles

sensor still for
2 seconds?

h During Normal Operation, On-the-fly
» recalibration occurs whenever still for 15
seconds. This accounts for temperature
shifts.

Factory Calibration

Before navX-sensors are shipped, the accelerometers and gyroscopes are initialy calibrated at the factory;
this calibration datais stored in flash memory and applied automatically to the accelerometer and

70

https://i1.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/CalibrationProcess1.png

Guidance
Gyro/Accelerometer Calibration

gyroscope data each time the navX-sensor circuit board is powered on.

Note that the onboard gyroscopes are sensitive to temperature changes. Therefore, since the average
ambient temperature at the factory (on theisland of Kauai in Hawaii) may be different than in your
environment, you can optionally choose to re-calibrate the gyroscope by pressing and holding the “CAL”
button for at least 10 seconds. When you release the “ CAL” button, ensure that the “CAL” Led flashes
briefly, and then press the “RESET” button to restart navX-sensor. When navX-sensor is re-started, it

will perform the Initial Gyro Calibration — the same process that occurs at our factory. NOTE: It isvery
important to hold navX-sensor still, and parallel to the earth’s surface, during this Initial Gyro
Calibration period. Y ou might consider performing this process before using your robot the first timeit is
used within a new environment (e.g., when you arrive at a FTC competition event).

The value of re-running Factory Calibration at the same temperature navX-sensor will be operated at is
potentially increased yaw accuracy as well as faster Startup Calibration. If asignificant temperature shift
has occurred since the last Factory Calibration, the Startup Calibration time may take longer than normal,
and it’s possible that yaw accuracy will be diminished until the next On-the-fly Gyro Calibration

compl etes.

“Second Generation” navX-sensor Factory Calibration Time (if till): ~2 seconds

“Classic” navX-sensor Factory Calibration Time (if still): ~15 seconds

Startup Calibration

Startup Calibration occurs each time the navX-sensor is powered on, and requires that the sensor be held
still in order to complete successfully. Using the Factory Calibration as a starting point, the sensor
calibrates the accel erometers and adjusts the gyroscope calibration data as well based upon current
temperature conditions.

If the sensor continues to move during startup calibration, Startup Calibration will eventually timeout —
and as aresult, the navX-sensor yaw angle may not be as accurate as expected.

“Second Generation” navX-sensor Startup Calibration Time (if still): ~1 second

“Classic” navX-sensor Startup Calibration Time (if still): ~15 seconds

Initial Yaw Offset Calibration

During Startup Calibration, an I nitial Yaw Offset is automatically calculated. The purpose of the Initial
Y aw Offset isto ensure that whatever direction the “front” of the navX-sensor circuit board is pointed to
at startup (after initial calibration is applied) will be considered “0 degrees’.

Y aw Offset Calibration requires that navX-sensor be still during Startup Calibration. After approximately
2 seconds of no motion, the navX-sensor will acquire the current yaw angle, and will subtract it from
future yaw measurements automatically. The navX-sensor protocol and libraries provide away to

71

Guidance
Gyro/Accelerometer Calibration

determine the yaw offset value it is currently using.
NOTE: If navX-sensor is moving during startup, this Yaw Offset Calibration may take longer than 2

seconds, and may not be calculated at all if the sensor continues moving long enough. Thereforeit is
important to keep a navX-sensor still until initial calibration and Initial Yaw Offset calibration completes.

On-the-fly Gyro Calibration

In addition to Startup Calibration, during normal operation navX-sensor will automatically re-calibrate
the gyroscope (e.g., to account for ongoing temperature changes) during operation, whenever it detects
several seconds of no motion. This process is completely transparent to the user. Therefore each time
navX-sensor for several seconds, the gyroscopes are re-calibrated “ on-the-fly”. The purpose of On-the-fly
Gyro re-calibration is to help maintain yaw accuracy when shifts in ambient temperature occur during
operation.

This On-the-fly Gyro Calibration can help deal with cases where the sensor was moving during Startup

Calibration, but note that the yaw is not zeroed at the completion of On-the-fly Calibration. So once
again, it’simportant to keep the sensor still during Startup Calibration.

Runtime Y aw Zeroing

Y our robot software can optionally provide the robot operator away to reset the yaw angle to Zero at any
time. Please see the documentation for the navX-sensor libraries for more details.

The importance of stillness

Thisisthe most important takeaway from this discussion: It is very important that navX-sensor be held
still during the above calibration periods. In support of this, navX-sensors indicate when they are
calibrating; we recommend you incorporate this information into your software. Please see the discussion
of the navXUI, and the navX-sensor libraries for more details on thisindication.

Magnetometer Calibration

navX-sensors require calibration in order to yield optimal results. We highly recommend taking the time
to understand this calibration process — successful calibration is vital to ensure optimal performance.

Careful and accurate Magnetometer Calibration iscrucial in order to yield valid compass heading,
9-axis heading and magnetic disturbance detection.

Magnetometer Calibration is not typically required for usein many FIRST FRC robot applications,
including Field-oriented drive. Magnetometer Calibration isa manual process and is recommended for
advanced users who need to calculate absolute heading.

72

https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/
https://pdocs.kauailabs.com/navx-mxp/software/navx-mxp-ui/
https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/

Guidance
Magnetometer Calibration

Cdlibration Process

The magnetometer calibration encompasses three areas: () hard-iron calibration, (b) soft-iron calibration
and (c) magnetic disturbance calibration.

Hard and soft-iron calibration allows the following equation to be used, and corrects for hard and soft-
iron effects due to nearby ferrous metals and magnetic fields. This calibration is necessary in order to
achieve valid compass heading readings:

Image not found

In addition, using the same calibration data the strength of the Earth’s Magnetic Field is determined.
Whenever the data from the magnetometer indicates the current magnetic field differs from the calibrated
Earth’s Magnetic Field strength by more than the “Magnetic Disturbance Ratio”, a Magnetic Anomaly is
declared.

Therefore, careful and accurate Magnetometer Calibrationis crucial in order to yield valid compass
heading, 9-axis heading and magnetic disturbance detection.

Magnetometer Calibration can be accomplished with a single, smple calibration process through the use
of the Magnetometer Calibration tool. Thistool is designed to run on a Windows computer, and
communicate to the navX-sensor circuit board viaa USB cable.

Y aw Drift

A gyroscope measures the amount of angular rotation about a single axis. Since the gyroscope measures
changesin angular rotation, rather than an absolute angle, calculation of the actual current angle of that
axisis estimated via numerical integration rather than an exact measurement.

Any Inertial Measurement Unit (IMU), including a navX-sensor, that integrates a signal from a gyroscope
will a'so accumulate error over time. Accumulated error is due to several factors, including:

e Quantization noise (which occurs when an analog-to-digital converter (ADC) converts a
continuous analog value to a discrete integral value)

e Scale factor error (which occurs due to manufacturing errors causing a specified scale factor [e.g.,
256 bits per unit G] to be incorrect)

e Temperature instability (which occurs when a sensor is more or less sensitive to an input as
temperature changes)

e Biaserror (which occurs because the value the sensor reports at ‘zero’ is not known well enough
to ‘subtract’ that value out during signal processing)

Over time, these errors accumulate leading to greater and greater amounts of error.

73

https://pdocs.kauailabs.com/navx-mxp/?page_id=228
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Quantization_(signal_processing)

Guidance
Yaw Drift

With the navX-sensor, Quantization error is minimized due to internal signal conditioning, high-
resolution 16-bit Analog-to-Digital Converters (ADC), and extremely fast internal sampling (416Hz).
Scale factor error is easily corrected for by factory calibration, which the navX-sensor provides. So these
two noise sources are not significant in a navX-sensor.

The remaining sources of error — temperature instability and bias error — are more challenging to
overcome:

e Gyro biaserror isamajor contributor to yaw drift error, but isinherent in modern MEM S-based
gyroscopes like those used in a navX-sensor.

e Temperature instability can cause major amounts of error, and should be managed to get the best
result. To address this, navX-sensors automatically re-calibrate the gyro biases whenever it is still
for several seconds, which helps manages temperature instability.

Errorsin the navX-sensor Pitch and Roll values are small — these angles are extremely accurate over time
since gyroscope values in the pitch/roll axes can be compared to the corresponding values from the
accelerometer. This is because when navX-sensor is still, the accelerometer data reflects only the linear
acceleration due to gravity.

Correcting for integration error in the Yaw axis is more complicated, since the accelerometer valuesin
this axis are the same no matter how much yaw rotation exists.

To deal with this, several different “datafusion” algorithms have been developed, including:

e Complementary filter
e Extended Kalman filter (EKF)
e Direction Cosine Matrix filter (DCM)

Note: See the References page for links to more information on these algorithms.
These algorithms combine the acceleromter and gyroscope data together to reduce errors.

The Complementary and EKF filter algorithms are designed to process 3-axis accelerometer and 3-axis
gyroscope values and yield yaw/pitch/roll values. The Complementary filter is a simple approach, and
works rather well, however the response time is somewhat slower than the EKF, and the accuracy is
somewhat lower.

The DCM filtering approach is similarly accurate and responsive as the EKF, however it requires
information from a 3-axis magnetometer as well to work correctly. Since the magnetometer on a FIRST
FRC robot typically experiences significant amounts of magnetic disturbance, the DCM algorithm is not
well suited for use in a Robotics Navigation Sensor.

For these reasons, the EKF is the preferred filtering algorithm to provide the highest performance IMU on
aFIRST FRC robot. However, the EKF algorithm is complex and difficult to understand, making it
typically beyond the capabilities of many robotics engineers. The “Generation 2" navX-sensors
implement an Extended Kalman Filter that runs at 416 Khz and yields extremely accurate results. The

74

https://pdocs.kauailabs.com/navx-mxp/advanced/techical-references/

Guidance
Yaw Drift

older “Classic” navX-MXP sensors used the Invensense MPU-9250 | C, which internally implemented a
proprietary algorithm widely believed to be an EKF (it exhibits similar accuracy to documented EKF
implementations on MEM S accel eromter/gyroscope sensors).

With this processing, navX-sensors exhibit very low yaw drift as documented in the Technical

Specifications.

Tips

What follows are some tips on how to deal with the yaw drift within the context of a FIRST FRC
competition.

In general, the yaw will not drift significantly during a FRC match, based upon the following
calculations:

“Generation 2" navX-sensors:

yaw drift(degrees) at end of match = yaw drift (~.5 degree/minute) x match length (2.5 minute) =
~1.25 degrees or better

“Classic” navX-sensors;

yaw drift(degrees) at end of match = yaw drift (~1 degree/minute) x match length (2.5 minute) =
~2.5 degrees

However, during long practice matches the drift may become noticeable, and can be dealt with using the
following approaches:

1) The simplest approach which is supported by the navX-sensor librariesis to periodically “re-zero”
navX-sensor by applying an offset to the navX-sensor yaw angle. To use this approach, when the robot is
in the correct orientation, a driver can press a button which causes an offset to be added so that the
reported angle at that orientation is 0.

2) Even though the navX-sensor magnetometer will likely give erroneous readings once the robot motors
are energized, a calibrated magnetometer can potentially provide a stable reading during the moments
before a FRC competition round. The navX-sensor provides a 9-axis “fused heading” which is combined
with the drift in the yaw angles. Using the “fused heading”, it is possible to calculate the robots absolute
orientation and maintain it. With the “fused heading”, that drift will be updated w/the absolute heading
from the compass whenever a compass reading which is free from magnetic disturbance is detected. Note

75

https://pdocs.kauailabs.com/navx-mxp/intro/technical-specifications/
https://pdocs.kauailabs.com/navx-mxp/intro/technical-specifications/

Guidance
Yaw Drift

that to be effective this requires the magnetometer to be calibrated. Once calibrated, an initial
magnetometer reading undisturbed by magnetic disturbances can be acquired at the beginning of a match,
before the motors are energized. If the sensor is placed far enough away from motors, it may be possible
to also get an undisturbed magnetometer during a match. Finally, note that the resulting angle is only as
accurate as the magnetometer calibration and magnetometer accuracy allow.

In practice, FRC teams find that approach 1) is preferred, and given the enhanced accuracy of
“Generation 2" sensorsthisis definitely the recommended approach.

76

Support
Support

Support
Support

Please visit navX-Sensor Support if you are experiencing difficulty or trouble.

In addition, some common needs are addressed:

e Instructions for updating the navX-sensor Firmware
¢ The navX-sensor Discussion Forum

o A “factory test” procedure which can verify the navX-sensor circuit board is functioning properly

Firmware Archive

The Firmware Archive includes past navX2-MXP and navX2-MXP firmware releases. Please visit navX-
Sensor Support to access the firmware archive.

Factory Test Procedure

The Factory Test Procedure verifies correct operation of the circuit board and it’s key components.
Please visit navX-Sensor Support for Factory Test Procedure instructions.

Softwar e Ar chive

The navX-sensor Software Archive includes past navX-sensor software rel eases.

NOTE: Kauai Labs strongly recommends using the |latest software versions.

To download an archived navX-sensor software version, right-click on the version number and download
the file to your computer, and run the setup.exefile.

2020 FRC Season Release

Version Number: 3.1.401

77

https://www.kauailabs.com/support/navx-mxp/
https://pdocs.kauailabs.com/navx-mxp/support/updating-firmware/
https://groups.google.com/group/navx-mxp
https://pdocs.kauailabs.com/navx-mxp/support/factory-test-procedure/
https://www.kauailabs.com/support/navx-mxp/kb/faq.php?id=49
https://www.kauailabs.com/support/navx-mxp/kb/faq.php?id=50
https://pdocs.kauailabs.com/navx-mxp/software/
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp_2020frc.zip

Support
Software Archive

The cross-platform build is also available for non-Windows platforms.
Change Summary

e C++/Java Added new Simulation Capabilities (on Windows platforms using the WP
“SimDevice’ Capabilities)

e 3D Models: Added STP and 3DS versions of navX-MXP enclosure and circuit board model

e C++/Java. Added support for accessing the navX-sensor on VM X-pi platforms

e C++/Javas AHRS Class modified to inherit from Gyro interface

e C++/Java. Added Device Usage Reporting

e Firmware: Enhanced SPI Error Recovery if navX-Sensor isreset during operation

e Installer: Updated Installer to install runtime libraries needed on different versions of the
Windows Platform

e C++/Java. Added V SCode-specific software examples

2019 FRC Season Release

Version Number: 3.1.339

Change Summary
J Firmware: Changed default serial protocol to the most commonly used protocol, reducing startup
J EITf/Java; Enhanced logging capabilities to indicate several common sequences and minimize

redundancy
e C++/Java: Enhanced performing by adding support for software-based yaw resets

2018 FRC Season Release
Version Number: 3.0.348
The cross-platform build is also available for non-Windows platforms.
Change Summary
e C++/Java Several updates to accommodate changesto WPI Library AP

e Firmware: Fix for intermittent CRC errors (on SPI interface) on certain boards
e |nstaller: Theinstaller is now signed, eliminating security warnings on Windows 10

2017 FRC Season Release
Version Number: 3.0.329

The cross-platform build is also available for non-Windows platforms.

78

https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp-libs_2020frc.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp_2019frc.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp_2018frc.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp-libs_2018frc.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp_2017.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp-libs_2017.zip

Support
Software Archive

Change Summary

e Firmware: Added support for 200Hz Update Rate

C++/Java: Added support for 200Hz Update Rate

C++/Java: Severa updates to accommodate changesto WPI Library API

C++/Java: Fix error recovery issue when communicating from RoboRIO vial2C
C++/Javac Added user-enabling/disabling of debug logging

LabVIEW: Introduction of new navX-AE LabVIEW Library (authored by Tim Easterling)

2016 FRC Season Release

Version Number: 3.0.263

The cross-platform build is also available for non-Windows platforms,
Change Summary

e Firmware: Added new “Omnimount” capabilities

Firmware: Added new onboard integration of Acceleration and Velocity estimates
Firmware: Added new onboard “yaw reset” feature

C++/JavalLabVIEW: Added support for onboard Acceleration/Velocity estimates and “yaw
reset” features

Firmware: Fixes some reliability issues w/I2C and SPI communication

2015 FRC Season Release

Version Number: 2.3.242 (Initial Release)

The cross-platform build is also available for non-Windows platforms.

79

https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp_2016.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp-libs_2016frc.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp_2015frc.zip
https://www.kauailabs.com/public_files/navx-mxp/archive/navx-mxp-libs_2015frc.zip

Advanced
Serial Protocol

Advanced
Serial Protocol

In order to communicate sensor datato aclient (e.g., a RoboRio robot controller) the navX-sensor
software uses a custom protocol. This protocol defines messages sent between the navX-sensor and the
client over a serial interface, and includes an error detection capability to ensure corrupted datais not
used by the client.

The navX-sensor Serial protocol uses two message types, the legacy ASCII messages initially introduced
in the nav6 sensor, and the modern binary messages introduced in the navX-sensor.

Source code that implements the navX-sensor ASCII and binary protocolsin Java and C++ are provided
to simplify adding support for the navX-sensor protocol to a software project.

M essage Structure

ASCII Protocol Messages

Each navX-sensor Serial ASCII protocol message has the following structure:

Start of Message Message ID Message Body Message Termination
1 byte 1 byte length is message-type 4 bytes
dependent

Binary Protocol M essages
Each navX-sensor Serial Binary protocol message has the following structure:

Start of Message Binary Message Binary Message Message ID Message Body Message
Indicator Length Termination
1 byte 1 byte 1 byte 1 byte length is message4 bytes
type dependent

Data Type Encoding (ASCII)

Basel6 encoding is used for ASCI message elements, as follows:

Data Type Encoding Example

Float (Sign)(100s)(10s)(1s).(10ths)(100t -132.96'. * 257.38
hs)

8-bit Integer (HighNibble)(LowNibble) ‘EY’

16-bit Integer (HighByte,HighNibble)(HighByte, * 1AOF

LowNibble)(LowByte,HighNibble

80

https://github.com/kauailabs/navxmxp/tree/master/java/navx/src/com/kauailabs/navx
https://github.com/kauailabs/navxmxp/tree/master/stm32/navx-mxp

Advanced
Serial Protocol

)(LowByte,LowNibble)

Data Type Encoding (Binary)

Binary encoding is used for all Binary message elements. All Binary-formatted data types that are signed
are encoded as 2's complement. All multi-byte datatypes arein little-endian format. Certain non-
standard ‘ packed’ data types are used to increase storage efficiency.

Data Type Range Byte Count
Unsigned Byte 0to 255 1
Unsigned Short 0 to 65535 2
Signed Short -32768 to 32768 2
Signed Hundredths -327.68 to 327.67 2
Unsigned Hundredths 0.0 to 655.35 2
Signed Thousandths -32.768 to 32.767 2
Signed Pi Radians -2t0 2 2
Q16.16 -32768.9999 to 32767.9999 4
Unsigned Long 0 to 4294967295 4

*Unsigned Hundredths: original value * 100 rounded to nearest integer
*Signed Hundredths: original value * 100 rounded to nearest integer
Signed Thousandths: origina value 1000 rounded to nearest integer
*Signed Pi Radians. original value * 16384 rounded to nearest integer

Start of Message

Each message begins with “start of message” indicator (a‘!’ character), which indicates that the
following bytes contain a message.

Binary M essage I ndicator

Each binary message includes a“binary message” indicator (a‘# character), which indicates that the
following bytes contain a binary message.

Binary Message L ength

Each Binary message contains a length value (a value from 0-255), which indicates that the number of
bytes which follow in the Message Body and Message Termination.

Message ID

The Message ID indicates the type of message, which may be one of the following:

ID Message Type Encoding

81

https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Endianness#Little-endian
https://en.wikipedia.org/wiki/Q_(number_format)

Advanced
Serial Protocol

Yy’ Y aw/Pitch/Roll/Compass Heading ASCII
Update

‘g Raw Data Update ASCII
‘P AHRS + Position Data Update Binary
‘S Stream Configuration Command ASCI|
‘s Stream Configuration Response ASCII
‘r Integration Control Command Binary
J’ Integration Control Response Binary
M essage Body

The message body differs depending upon the Message Type; the various Message Body specifications
are listed below.

Message Termination

The final four bytes of each Serial protocol message contain a Basel6 unsigned 8-bit checksum (encoded
in 2 bytes as an ASCII 8-bit integer) followed by a carriage return and then aline feed character.

Checksum

The checksum is calculated by adding each byte of the message except the bytes within the Message
Termination itself. The checksum is accumulated within an 8-bit unsigned byte.

New Line

The carriage return (0x10) and newline characters (0x13) are present at the end of the message so that
when the message is displayed in a console window, anew line will be inserted in the console at the end
of the message.

Message Body Definitions

Y aw/Pitch/Roll/Compass Heading Update M essage

The Y aw/Pitch/Roll/Compass Heading Update message indicates the navX-sensor current orientation and
heading, in units of degrees, as follows:

Byte Offset Element Data Type Unit

0 Yaw Float Degrees (-180 to 180)
7 Pitch Float Degrees (-180 to 180)
14 Roll Float Degrees (-180 to 180)
21 Compass Heading Float Degrees (0 to 360)

82

https://en.wikipedia.org/wiki/Carriage_return
https://en.wikipedia.org/wiki/Newline

Advanced
Serial Protocol

Raw Data Update M essage

The Raw Data update message communicates the raw gyro, accelerometer, magnetometer and
temperature data. This data bypasses the navX-Sensor Motion Processor, and allows the individual
sensors to be used directly without any intervening processing. This can allow the following types of use:

e Accessto instantaneous measures of angular velocity in each of the X, Y and Z axes, provided by
the tri-axial gyroscopes. Note that the accel erometer and gyroscope data has already had bias
calibration applied.

e Additionally, raw magnetometer datais provided. Note that the raw magnetometer data may have
already had soft/hard iron calibration applied, if the navX-sensor magnetometer calibration
procedure has already been completed.

Byte Offset Element Data Type

0 Gyro X (15-hits, signed) 16-bit Integer
4 Gyro'Y (15-bits, signed) 16-bit Integer
8 Gyro Z (15-bits, signed) 16-bit Integer
12 Acceleration X (16-bits, signed) 16-bit Integer
16 Acceleration Y (16-bits, signed) 16-bit Integer
20 Acceleration Z (16-bits, signed) 16-bit Integer
24 Magnetometer X (12 bits, signed) 16-bit Integer
28 Magnetometer Y (12 bits, signed) 16-bit Integer
32 Magnetometer Z (12 bits, signed) 16-bit Integer
36 Temperature (Centigrade degrees) Float

Gyro Device Units. value in deg/sec * gyro full scale range
Accelerometer Device Units. valuein G * accelerometer full scale range

Magnetometer Device Units: valuein uTesla* .15

AHRS/ Position Data Update

Byte Offset Element Data Type Unit

0 Y aw Signed Hundredths Degrees
2 Pitch Signed Hundredths Degrees
4 Roll Signed Hundredths Degrees
6 Compass Heading Unsigned HundredthsDegrees
8 Altitude Signed 16:16 Meters
12 Fused Heading Unsigned HundredthsDegrees
14 Linear Accel X Signed Thousandths G

16 Linear Accel Y Signed Thousandths G

18 Linear Accel Z Signed Thousandths G

20 Velocity X Signed 16:16 Meters/Sec

83

Advanced

Serial Protocol
24 Velocity Y Signed 16:16 Meters/Sec
28 Velocity Z Signed 16:16 Meters/Sec
32 Displacement X Signed 16:16 Meters
36 Displacement Y Signed 16:16 Meters
40 Displacement Z Signed 16:16 Meters
44 Quaternion W Signed Pi Radians Pi Radians
46 Quaternion X Signed Pi Radians Pi Radians
48 Quaternion Y Signed Pi Radians Pi Radians
50 Quaternion Z Signed Pi Radians Pi Radians
52 MPU Temp Signed Hundredths Centigrade
54 Op. Status Uint8 NAVX_OP STATUS
55 Sensor Status Uint8 NAVX_SENSOR_STATUS
56 Cal. Status Uint8 NAVX_CAL_STATUS
57 Selftest Status Uint8 NAVX_SELFTEST_STATUS

Stream Configuration Command

By default, a navX-sensor begins transmitting Y PR Updates upon power up. The Stream Configuration
Command is sent in order to change the type of navX-sensor Streaming Update transmitted to the client.

Byte Offset Element Data Type
0 Stream Type 8-bit ASCII Character
1 Update Rate (Hz) — Vaid range: 8-hit Integer
4-60
Stream Type Description
y’ Y aw, Pitch, Roll & Compass Heading Update
‘g Gyro (Raw) Data Update
‘v AHRS + Position Data Update

Stream Configuration Response

Whenever a Stream Configuration Command is received a navX-sensor responds by sending a Stream
Configuration Response message, which is formatted as follows:

Byte Offset Element DataType

0 Stream Type 8-bit ASCII Character

1 Gyroscope Full Scale Range 16-bit Integer
(Degrees/sec)

5 Accelerometer Full Scale Range 16-bit Integer
(©)

9 Update Rate (Hz) 16-bit Integer

13 Calibrated Y aw Offset (Degrees) Float

20 Reserved 16-bit Integer

24 Reserved 16-bit Integer

28 Reserved 16-bit Integer

32 Reserved 16-bit Integer

84

http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_OP_STATUS
http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_SENSOR_STATUS
http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_CAL_STATUS
http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_SELFTEST_STATUS

Advanced
Serial Protocol

36 Flags 16-bit Integer

Flag value Desription

0,1 Startup Gyro Calibration in progress
2 Startup Gyro Calibration complete

| ntegration Control Command

The Integration Control Command is sent in order to cause certain values being integrated on the navX-
sensor to be reset to 0.

Byte Offset Element Data Type

0 Action uint8
(NAVX_INTEGRATION_CTL)

1 Parameter Uint32

| ntegration Control Response

The Integration Control Response is sent in response to an Integration Control Command, confiming that
certain values being integrated on the navX-sensor have been reset to 0.

Byte Offset Element DataType

0 Action Uint8
(NAVX_INTEGRATION_CTL)

1 Parameter Uint32

Register Protocol

In addition to the streaming Serial protocol, navX-sensors may be accessed over the |2C and SPI buses,
using aregister-based protocol. This page documents the register-based protocol used on both the 12C and
SPI bus.

Reqister-based protocol overview

Unlike the streaming Serial protocol, which periodically sends out updates messages whenever new data
isavailable, the register based protocol isa*polled” interface, in that the consumer of the navX-sensor
data (in this case referred to as a “ bus master”) can request data from the navX-sensor at any time. At the
same time, when using the register-based protocol the bus master does not know when new datais
available.

To help this situation, atimestamp — which is updated whenever new data is available — is made
available. Therefore, the general approach to ensure each new data sampleisretrieved isto regularly (at
the current navX-sensor update rate) retrieve both the timestamp and the data of interest), and if the
timestamp differs from the previous timestamp by the update rate as expressed in milliseconds, then the
data samplejust retrieved is current, and no data has been missed.

85

http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_INTEGRATION_CTL
http://navx-mxp.kauailabs.com/advanced/register-protocol#NAVX_INTEGRATION_CTL

Advanced
Register Protocol

[2C Overview

The navX-sensor responds to 7-bit address 50 (0x32) on the |2C bus. If accessing the navX-sensor viathe
|2C bus, ensure that no other device at that address is on the same bus.

The navX-sensor 12C bus operates at a speed up to 400K hz.

When accessing the navX-sensor viathe I 2C bus, this following pattern is used:

— The 12C bus master sends the navX-sensor 12C address. The highest bit is set to indicate the bus master
intends to write to the navX-sensor. If the highest bit is clear, this indicates the bus master intends to read
from the navX-sensor.

—The 12C bus master next sends the starting register address it intends to write to or read from.

— The 12C bus master next initiates 12C bus transactions. The navX-sensor supports | 2C burst mode for
read operations, therefore the navX-sensor will respond with register values as long as the 12C bus master

continues the transaction, and as long as the last register address has not yet been reached.

If instead the 12C bus master intends to write data to a writable navX-sensor register, the bus master
should transmit the new register value immediately after sending the register address.

SPI Overview

The navX-sensor SPI datais communicated as follows:

—Most-significant bit first — Maximum Bitrate: 2mbps — Clock Polarity/Clock Phase — Mode 3

86

Advanced
Register Protocol

Clock Phase (CPHA)
CPHA =0 CPHA = 1

sampye somple

'§' o
S 3
—_
£ MODE O = MODE 1
=)
] P)
S -
Y |
89
L I
MODE 2 MODE 3
sample \ sample J

When accessing the navX-sensor viathe SPI bus, this following pattern is used:

— When the SPI bus master is not communicating with the navX-sensor, the SPI bus master must hold the
chip select (CS) line high.

— The SPI bus master lowers the CSline.

— The SPI bus master next transmits the register address it intends to read from or write to. If writing, the
upper bit (0x80) must be set; if this upper bit is clear, thisindicates aread transaction.

— If the SPI bus master isreading, it next transmits the count of registersit wishesto read from. This
count must be at least 1, and must be not exceed the maximum register address less the requested register
address.

— If the SPI bus master iswriting, it transmits the register value to be written to the specified register
address.

— The SPI bus master finally transmits an 8-bit CRC (see CRC cal culation section below) whichis
calculated on the register address and count values previously transmitted.

— If the SPI bus master iswriting, it raises the CS line to complete the write sequence.
— If the SPI bus master isreading:
— The SPI bus master raises the CSline.

— The SPI bus master delays for 200 microseconds, giving the navX-sensor sufficient time to prepare for
the upcoming SPI bus transaction.

87

https://i2.wp.com/www.pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/spi_polarity_and_phase.png

Advanced
Register Protocol

— The SPI bus master lowers the CSline.
— The SPI bus master initiates a series of SPI bus transactions, where the number of individual

8-hit transfersis equal to the count previously specified, plus one additional transfer for a CRC
value transmitted by the nav-sensor.

— The SPI bus master raises the CS line to complete the read sequence.

CRC Calculation

The SPI protocol requires use of a cylic redundancy check (CRC) allowing the detection of corrupted data
transmission over the high-speed SPI bus. Each SPI protocol message must end with a byte containing the
CRC vaue.

The SPI protocol uses a 7-bit CRC with a polynomial value of 0x91.

For example code to calculate the CRC value, please see Line 445 of the IMURegisters.h source code.

navX-sensor Register Data Types

All multi-byte registers are in little-endian format.
All registerswith ‘signed’ data are 2's-complement.

Data Type Range Byte Count
Unsigned Byte 0to 255 1
Unsigned Short 0 to 65535 2
Signed Short -32768 to 32768 2
signed hundredths -327.68 to 327.67 2
Unsigned Hundredths 0.0t0 655.35 2
Signed Thousandths -32.768 to 32.767 2
Signed Pi Radians -2t0 2 2
Q16.16 -32768.9999 to 32767.9999 4
Unsigned Long 0 to 4294967295 4

*Unsigned Hundredths: original value * 100 to rounded to nearest integer
*Signed Hundredths: original value * 100 rounded to nearest integer
Signed Thousandths: origina value 1000 rounted to nearest integer
*Signed Pi Radians. original value * 16384 rounded to nearest integer

navX-sensor Register Map

Address (Hex) Name Access Range/Data Type

88

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://github.com/kauailabs/navxmxp/blob/master/stm32/navx-mxp/IMURegisters.h
https://en.wikipedia.org/wiki/Endianness#Little-endian
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Q_(number_format)

Advanced
Register Protocol

0x00 WhoAml Read-only 50 (0x32): navX-sensor

0x01 Board Revision Read-only Unsigned byte

0x02 Firmware Mgjor Version Read-only Unsigned byte

0x03 Firmware Minor Version Read-only Unsigned byte

0x04 Update Rate Read/write Unsigned byte (Hz)

0x05 Accel FSR Read-only Unsigned byte
(Degrees/Sec)

0x06-0x07 Gyro FSR Read-only Unsigned short(G)

0x08 Operationa Status Read-only See
NAVX_OP_STATUS

0x09 Calibration Status Read-only See
NAVX_CAL_STATUS

Ox0A Self-test Status Read-only See NAVX_SELFTEST _
STATUS

0x0B Capability Flags (low) Read-only See
NAVX_CAPABILITY

0x0C Capability Flags (high) Read-only “r

0x0D-0x0F n/a Read-only

Open-sour ce Har dwar e/Softwar e

“Classic” navX-MXP

The navX-MXP project is completely open source, including schematics, firmware and design files for an
enclosure.

These sources are available online at the navX-MXP Github Repository.

“Generation 2" navX2-M XP

Sources for the navX-sensor libraries are available online at the navX-MXP Github Repository.

"Classic" navX-M XP Firmware Customization

The*Classic” navX-MXP firmware was devel oped/debugging using the following software tools, which
(with the exception of the Debugging hardware) are open-source or freely-available. The only component
you may want to purchase is the inexpensive ST-LINK/V2 JTAG programmer/debugger described below.

NOTE: Theinstructions below are only for the “Classic” navX-MXP firmware.

Install Compiler

Install the free Code sourcery G++ Lite compiler for the ARM Cortex processor used in the nav-MXP.

89

https://github.com/kauailabs/navxmxp
https://github.com/kauailabs/navxmxp

Advanced
"Classic" navX-MXP Firmware Customization

Download URL:

https.//sourcery.mentor.com/sgpp/lite/arm/portal /subscription?@templ ate=lite

After installing, the compiler isinstalled into folder (32-bit Windows)

C:\Program Files\CodeSourcery\Sourcery G++ Lite

For 64-bit Windows, it isinstalled into:

C:\Program Files (x86)\CodeSourcery\Sourcery G++ Lite

Add the path to the “bin” director underneath the Code Sourcery G++ Lite installation directory, so that
the compiler is on the path.

Install Eclipse IDE

Install the Eclipse IDE for C/C++ Developers at the following download URL :

https://www.eclipse.org/downl oads/

If you already have eclipse installed w/out the C/C++ Development tools (CDT) you will need to install
them, too:

90

https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription?@template=lite
https://www.eclipse.org/downloads/

Advanced
"Classic" navX-MXP Firmware Customization

CDT 8.1.2 (or later)

A URL for this software, including the CDT, is at:

https://www.eclipse.org/downl oads/packages/eclipse-ide-cc-devel opers/junosr2

Install the Zylin embedded CDT Plugin

Thisisinstalled from within Eclipse, sinceit is an Eclipse Plugin. If you are unfamiliar with
installingn Eclipse plugins, please visit this URL for more information on the process:

https.//wiki.eclipse.org/FAQ How_do_|_install_new_plug-ins¥%3F

Zylin Plugin Update URL : http://opensource.zylin.com/embeddedcdt.html

| mport the project into Eclipse

Open up eclipse, and import the project which is contained in the navX-MXP stm32 directory in the
Github repository.
Building

In Eclipse, select Project->Build. You might find it necessary to Project->Clean first to remove
old build output files.

91

http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junosr2
http://wiki.eclipse.org/FAQ_How_do_I_install_new_plug-ins%3F
http://opensource.zylin.com/embeddedcdt.html

Advanced
"Classic" navX-MXP Firmware Customization

The output of the build will be placed in the stm32/Debug directory. The extension of the file will be .hex
(Intel HEX Binary format).

Y ou can either download thisfile viathe ST Microelectronics DfuSe utility, or you can download it via
the ST-LINK/V 2 adapter (see instructions on debugging below).

In-Circuit Debugging (optional, but highly recommended)

ST-LINK/V2

ST-LINK/V2 JTAG in-circuit debugger was used, thisis very inexpensive and works very well.

The ST-LINK/V 2 can be purchased at www.digikey.com (among others) for approximately $40.

Additional utilities for the ST-LINK/V 2 (for windows) are available on the STM website.

Connecting the ST-LINK/V2 to the navX-MXP Circuit Board

Y ou will need to solder a 4-pin header to the navX-MXP board in order to connect debug on the
navX-MXP s STM32F411 microcontroller. Then, you will need to connect 4 wires from the
connector to the corresponding location on the ST-LINK/V 2 connector. Instructions on how to do
this can be found at the following URL:

https.//www.micromouseonline.com/2011/11/05/stlink-swd-for-stm32/

|nstall OpenOCD

In order to interface eclipse with the ST-LINK/V2 JTAG in-circuit debugger, the OpenOCD Server is
used.

OpenOCD, version 0.9.0 (windows version available at

92

http://www.micromouseonline.com/2011/11/05/stlink-swd-for-stm32/

Advanced
"Classic" navX-MXP Firmware Customization

https://www.freddiechopin.info/en/articles/34-news/92-openocd-w-wersii-080)

OpenOCD includes A gdb server that runs with the ST-LINK/V2.

e MPORTANT NOTE: THe 0.9.0 release of OpenOCD contains a bugfix; earlier releases of
OpenOCD from cannot communicate correctly with the STM32F411 microcontroller used in the
navX-MXP. If you are not able to acquire this release of OpenOCD, please contact
support@kauailabs.com for information on how to proceed.

Configure Eclipse to run OpenOCD

Run->External Tools->External Tools Configuration...

Add anew configuration, name it “OpenOCD”

In the “main” tab, under Location, provide the path to the location of Open OCD. E.g.,
C:\OpenOCD\openocd-09.0\bin-x64\openocd-x64-0.9.0.exe

In the same “main” tab, in the Arguments window, enter the following:

-f C:\OpenOCD\openocd-0.9.0\scripts\interface\stlink-v2.cfg -f
C:\OpenOCD\openocd-0.9.0\scripts\target\stm32f4x_stlink.cfg

To start the OpenOCD Server, Select Run->External Tool s?->0penOCD (where OpenOCD is the
name provided earlier on the “main” tab)

Once the OpenOCD Server has started, the debug session can be started.

93

http://www.freddiechopin.info/en/articles/34-news/92-openocd-w-
https://code.google.com/p/navxmxp/w/edit/ExternalTools

Advanced
"Classic" navX-MXP Firmware Customization

Starting a Debug Session

6b) To start a debug session, first create a debug configuration:

e Select Run->Debug Configurations...
e Select “Zylin Embedded Debug (Cygwin)”

Then, add a new configuration (e.g., (navX-MXP OpenOCD Debug Session”); the new
configuration will be a child node of Zylin Embedded Debug (Cygwin)

On the Debugger Tab:

Set GDB Debugger to arm-none-eabi-gdb
Set GDB Command File to <navx-mxp-distribution_directory\stm32\gdb\nav10.script
Select “Verbose console mode”

NOTE: You will need to edit the nav10.script file to reference your particular directory path to the
“navx-mxp-distribution-directory” you unpacked the navx mxp distribution .zip into.

Once the debug configuration is created, and the open ocd session is started, start debugging via
Run->Debug

navXUl Customization

The navXUI Source Code is Open-Source and can be customized using the following instructions:

Download and install the free . NOTE: the current navXUI code is compatible with
version 3.0betab of the Processing devel opment environment.

Checkout the navX M XP source code on GitHub.

Copy the contents of the navX-MXP source code’s ‘processing’ directory to <User
Directory>\Processing directory.

Open the Processing IDE and then open the navXUI sketch via the File->Sketchbook menu.

94

https://github.com/kauailabs/navxmxp

Advanced
navXUl Customization

e Compile/Run the navXUI by selecting the Sketch->Run menu.
If your computer has more than one seria port, you will need to select the appropriate serial port

(corresponding to the USB seria port navX-MXP is connected to) from the COM port selection drop-
down list in the top-right of the navXUI display.

Technical References

The references on this page are provided to help students gain a deeper understanding of the algorithms,
technologies and tools used within the navX-sensor and other Inertial Measurement Unit (IMU) and
Attitude/Heading Reference System (AHRS) products.

Algorithms

Complementary Filter Algorithm
Magnetometer Calibration and Tilt Compensation

| mplementing Positioning Algorithms Using Accelerometers

Technology

MEMS

MEMS Gyroscopes

Magnetometers

Tools

Eagle PCB Tutorial

95

https://www.pieter-jan.com/node/11
https://www.sensorsmag.com/sensors/motion-velocity-displacement/compensating-tilt-hard-iron-and-soft-iron-effects-6475
https://pdocs.kauailabs.com/navx-mxp/wp-content/uploads/2015/04/ImplementingPositioningAlgorithmsUsingAccelerometers.pdf
https://www.memsnet.org/mems/what_is.html
https://electroiq.com/blog/2010/11/introduction-to-mems-gyroscopes/
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Magnetometer.html
https://learn.sparkfun.com/tutorials/how-to-install-and-setup-eagle
http://www.tcpdf.org

	Table of Contents
	Overview
	navX2-MXP
	Features
	Technical Specifications
	"Behind the Design"
	Frequently-asked Questions

	Installation
	Installation
	RoboRIO Installation
	FTC Installation
	Orientation
	OmniMount
	I/O Expansion
	Alternative Installation Options
	Creating an Enclosure

	Software
	Software
	RoboRIO Libraries
	Android Library (FTC)
	Linux Library
	Arduino Library
	navXUI
	Tools

	Examples
	Examples
	Field-Oriented Drive (FRC)
	Rotate to Angle (FRC)
	Automatic Balancing (FRC)
	Collision Detection (FRC)
	Motion Detection (FRC)
	Data Monitor (FRC)
	MXP I/O Expansion (FRC)

	Guidance
	Best Practices
	Terminology
	Selecting an Interface
	Gyro/Accelerometer Calibration
	Magnetometer Calibration
	Yaw Drift

	Support
	Support
	Firmware Archive
	Factory Test Procedure
	Software Archive

	Advanced
	Serial Protocol
	Register Protocol
	Open-source Hardware/Software
	"Classic" navX-MXP Firmware Customization
	navXUI Customization
	Technical References

